A male zebra finch learns a song by listening to a tutor, but song learning is normally restricted to a critical period in juvenile development. Here we identify an RNA whose expression in the song control circuit is altered during this critical period. The RNA encodes a soluble presynaptic protein that forms a predicted amphipathic alpha helix typical of the lipid-binding domain in apolipoproteins. We show this protein, which we call synelfin, to be the homolog of the human non-A beta component (and its precursor) recently purified from Alzheimer's disease amyloid. We suggest this highly conserved protein may serve a novel function critical to the regulation of vertebrate neural plasticity.
␣-Synuclein has been centrally implicated in neurodegenerative disease, and a normal function in developmental synaptic plasticity has been suggested by studies in songbirds. A variety of observations suggest the protein partitions between membrane and cytosol, a behavior apparently conferred by a conserved structural similarity to the exchangeable apolipoproteins. Here we show that the capacity to bind lipids is broadly distributed across exons 3, 4, and 5 (encoding residues 1-102). Binding to phosphatidylserine-containing vesicles requires the presence of all three exons, while binding to phosphatidic acid can be mediated by any one of the three. Consistent with a "class A2" helical binding mechanism, lipid association is disrupted by introduction of charged residues along the hydrophobic face of the predicted ␣-helix and also by biotinylation of conserved lysines (which line the interfacial region). Circular dichroism spectroscopy reveals a general correlation between the amount of lipid-induced ␣-helix content and the degree of binding to PS-containing vesicles. Two point mutations associated with Parkinson's disease have little (A30P) or no (A53T) effect on lipid binding or ␣-helicity. These results are consistent with the hypothesis that ␣-synuclein's normal functions depend on an ability to undergo a large conformational change in the presence of specific phospholipids.
α-Synuclein (AS) fibrils are the major component of Lewy bodies, the pathological hallmark of Parkinson’s disease (PD). Here, we use results from an extensive investigation employing solid-state NMR to present a detailed structural characterization and conformational dynamics quantification of full-length AS fibrils. Our results show that the core extends with a repeated structural motif. This result disagrees with the previously proposed fold of AS fibrils obtained with limited solid-state NMR data. Additionally, our results demonstrate that the three single point mutations associated with early-onset PD—A30P, E46K and A53T—are located in structured regions. We find that E46K and A53T mutations, located in rigid β-strands of the wild-type fibrils, are associated with major and minor structural perturbations, respectively.
This is the first study to show the direct effects of α-synuclein on synaptic vesicle trafficking and to elucidate the underlying structural mechanisms. Acutely increasing α-synuclein severely inhibits synaptic vesicle recycling from the plasma membrane. The endocytic defects require a properly folded N-terminal α-helical domain of α-synuclein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.