Previous studies indicate that repetition is affected in primary progressive aphasia (PPA), particularly in the logopenic variant, due to limited auditory-verbal short-term memory (avSTM). We tested repetition of phrases varied by length (short, long) and meaning (meaningful, non-meaningful) in 58 participants (22 logopenic, 19 nonfluent, and 17 semantic variants) and 21 healthy controls using a modified Bayles repetition test. We evaluated the relation between cortical thickness and repetition performance and whether sub-scores could discriminate PPA variants. Logopenic participants showed impaired repetition across all phrases, specifically in repeating long phrases and any phrases that were non-meaningful. Nonfluent, semantic, and healthy control participants only had difficulty repeating long, non-meaningful phrases. Poor repetition of long phrases was associated with cortical thinning in left temporo-parietal areas across all variants, highlighting the importance of these areas in avSTM. Finally, Bayles repetition phrases can assist classification in PPA, discriminating logopenic from nonfluent/semantic participants with 89% accuracy.
The semantic variant of primary progressive aphasia (svPPA) is a clinical syndrome characterized by semantic memory deficits with relatively preserved motor speech, syntax, and phonology. There is consistent evidence linking focal neurodegeneration of the anterior temporal lobes (ATL) to the semantic deficits observed in svPPA. Less is known about large-scale functional connectivity changes in this syndrome, particularly regarding the interplay between affected and spared language networks that leads to the unique cognitive dissociations typical of svPPA. Using whole-brain, seed-based connectivity on task-free Magnetic Resonance Imaging (MRI) data, we studied connectivity of networks anchored to three left-hemisphere regions crucially involved in svPPA symptomatology: ATL just posterior to the main atrophic area, opercular inferior frontal gyrus, and posterior inferior temporal lobe. First, in 32 healthy controls, these seeds isolated three networks: a ventral semantic network involving anterior middle temporal and angular gyri, a dorsal articulatory-phonological system involving inferior frontal and supramarginal regions, and a third functional connection between posterior inferior temporal and intraparietal regions likely involved in linking visual and linguistic processes. We then compared connectivity strength of these three networks between 16 svPPA patients and the 32 controls. In svPPA, decreased functional connectivity in the ventral semantic network correlated with weak semantic skills, while connectivity of the network seeded from the posterior inferior temporal lobe, though not significantly different between the two groups, correlated with pseudoword reading skills. Increased connectivity between the inferior frontal gyrus and the superior portion of the angular gyrus suggested possible adaptive changes. Our findings have two main implications. First, they support a functional subdivision of the left IPL based on its connectivity to specific language-related regions. Second, the unique neuroanatomical and linguistic profile observed in svPPA provides a compelling model for the functional interplay of these networks, being either up- or down- regulated in response to disease.
ObjectiveTo investigate in-vivo cortical gyrification patterns measured by the local gyrification index (lGI) in presymptomatic c9orf72 expansion carriers compared with healthy controls, and investigate relationships between lGI and cortical thickness, an established morphometric measure of neurodegeneration.MethodsWe assessed cortical gyrification and thickness patterns in a cohort of 15 presymptomatic c9orf72 expansion carriers (age 43.7 ± 10.2 years, 9 females) compared with 67 (age 42.4 ± 12.4 years, 36 females) age and sex matched healthy controls using the dedicated Freesurfer pipeline.ResultsCompared with controls, presymptomatic carriers showed significantly lower lGI in left frontal and right parieto-occipital regions. Interestingly, those areas with abnormal gyrification in presymptomatic carriers showed no concomitant cortical thickness abnormality. Overall, for both presymptomatic carriers and healthy controls, gyrification and cortical thickness measures were not correlated, suggesting that gyrification captures a feature distinct from cortical thickness.ConclusionsPresymptomatic c9orf72 expansion carriers show regions of abnormally low gyrification as early as their 30s, decades before expected symptom onset. Cortical gyrification represents a novel grey matter metric distinctive from grey matter thickness or volume and detects differences in presymptomatic carriers at an early age.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.