The A mating-type factor is one of two gene complexes that allows mating cells of the mushroom Coprinus cinereus to recognize self from nonself and to regulate a pathway of sexual development that leads to meiosis and sporulation. We have identified seven A genes separated into two subcomplexes corresponding to the classical Aa and A/3 loci. Four genes, one a and three p, all coding for proteins with a homeo domain-related motif, determine A-factor specificity; their allelic forms are so different in sequence that they do not cross-hybridize. It requires only one of these four genes to be heteroallelic in a cell to trigger A-regulated sexual development, and it is the different combinations of their alleles that generate the multiple A factors found in nature. The other three genes cause no change in cell morphology and may regulate the activity of the four specificity genes.
The A mating type factor of the fungus Coprinus cinereus regulates essential steps in sexual development. Here we describe features of one of the four specificity genes of the A42 factor. By transformation we show that the gene regulates not only sexual development but also asexual sporulation. DNA sequence analysis shows that the gene beta 1–1, encodes a protein with a DNA binding motif and is thus likely to be a transcription factor. The DNA binding domain is an unusual homeodomain with D replacing the normally invariant N in the recognition helix and apparent absence of helix II. The homeodomain is linked to a helical region related to the POUs domain, which is part of a bipartite DNA binding domain of certain animal transcription factors. Like POU factors, the beta 1–1 protein has regions rich in serine, threonine and proline which are possible transactivation domains. Putative dimerization domains and sites for post‐translational modification are described.
The A mating type genes of the mushroom Coprinus cinereus encode two classes of putative transcription factor with distinctive homeodomain motifs (HD1 and HD2). A successful mating brings together different allelic forms of these genes and this triggers part of a developmental sequence required for sexual reproduction. In this report we provide evidence that this developmental programme is promoted by a physical interaction between the two classes of homeodomain protein. Rare dominant mutations conferring self‐compatibility map to the A locus and result in constitutive operation of the A‐regulated developmental pathway. Our molecular analysis of one of these mutations shows that it has generated a chimeric gene by inframe fusion of an HD2 and an HD1 gene. Fusion has overcome the normal incompatibility between two proteins coded by genes of the same A locus and generated a protein that is sufficient to promote development in the absence of any other active A mating type genes. The fusion protein retains most of the HD2 sequence, but only the C‐terminal part of the HD1 protein. It has only the HD2 homeodomain motif as a potential DNA binding domain fused to an essential C‐terminal region of the HD1 protein, which in a normal HD1‐HD2 protein complex may be the major activation domain.
We have identified the seven genes that constitute the A43 mating-type factor of Coprinus cinereus and compare the organisation of A43 with the previously characterised A42 factor. In both, the genes that trigger clamp cell development, the so-called specificity genes, are separated into alpha and beta loci by 7 kb of noncoding sequence and are flanked by homologous genes alpha-fg and beta-fg. The specificity genes are known to encode two classes of dissimilar homeodomain (HD1 and HD2) proteins and have different allelic forms which show little or no cross-hybridisation. By partial sequencing we identified a divergently transcribed HD1 (a1-2) and HD2 (a2-2) gene in the A43 alpha locus. a2-2 failed to elicit clamp cell development in three different hosts, suggesting that it is non-functional. a1-2 elicited clamp cells in an A42 host that has only an HD2 gene (a2-1) in its alpha locus, thus demonstrating that the compatible A alpha mating interaction is between an HD1 and an HD2 protein. The A43 beta locus contains three specificity genes, the divergently transcribed HD1 and HD2 genes b1-2 and b2-2 and a third HD1 gene (d1-1) that was shown by hybridisation and transformation analyses to be functionally equivalent to d1-1 in A42. An untranscribed footprint of a third A42 HD1 gene, c1-1, was detected between the A43 b2-2 and d1-1 genes by Southern hybridisation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.