In vitro metabolism of methadone was investigated in cytochrome P450 (CYP) supersomes and phenotyped human liver microsomes (HLMs) to reconcile past findings on CYP involvement in stereo-selective metabolism of methadone. Racaemic methadone was used for incubations; (R)-and (S)-methadone turnover and (R)-and (S)-EDDP formation were determined using chiral liquid chromatography-tandem mass spectrometry. CYP supersome activity for methadone use and EDDP formation ranked CYP2B6 > 3A4 > 2C19 > 2D6 > 2C18, 3A7 > 2C8, 2C9, 3A5. After abundance scaling, CYP3A4, 2B6 and 2C19 accounted for 63-74, 12-32 and 1. 4-14% of respective activity. CYP2B6, 2D6 and 2C18 demonstrated a preference for (S)-EDDP formation; CYP2C19, 3A7 and 2C8 for (R)-EDDP; 3A4 none. Correlation analysis with 15 HLMs supported the involvement of CYP2B6 and 3A. The significant correlation of S ⁄ R ratio with CYP2B6 activity confirmed its stereo-selectivity. CYP2C19 and 2D6 inhibitors and monoclonal antibody (mAb) did not inhibit EDDP formation in HLM. Chemical and mAb inhibition of CYP3A in high 3A activity HLM reduced EDDP formation by 60-85%; inhibition of CYP2B6 in 2B6 high-activity HLM reduced (S)-EDDP formation by 80% and (R)-EDDP formation by 55%. Inhibition changed methadone metabolism in a stereo-selective manner. When CYP3A was inhibited, 2B6 mediated (S)-EDDP formation predominated; S ⁄ R stereo-selectivity increased. When 2B6 was inhibited (S)-EDDP formation fell and stereo-selectivity decreased. The results confirmed the primary roles of CYPs 3A4 and 2B6 in methadone metabolism; CYP2C8 and 2C9 did not appear involved; 2C19 and 2D6 have minimal roles. CYP2B6 is the primary determinant of stereo-selective metabolism; stereo-selective inhibition might play a role in varied plasma concentrations of the two enantiomers.Methadone is a l-opioid receptor agonist that is used for the treatment of chronic pain and opioid dependence. Clinically, it is used in the racaemic form; (R)-methadone has higher affinity at l and d opioid receptors [1] and greater analgesic activity [2]. Pharmacokinetic studies in human beings have also found differences between the two isomers, with (R)-methadone having significantly longer elimination half-life, greater volume of distribution, and lower protein binding [3][4][5]. Methadone is subject to numerous pharmacokinetic drug interactions; these are thought to primarily occur at cytochrome P450 (CYP) sites of methadone metabolism [6][7][8][9]. The stereo-selectivity of the drug interaction may be of importance; interactions that increase or decrease (R)-methadone may lead to toxicity (i.e. respiratory depression) or withdrawal, respectively; interactions that increase (S)-methadone may increase the incidence of prolonged QT intervals [10].Since the initial studies on CYP involvement in the in vitro metabolism of methadone [11,12], five other laboratories have investigated comparative involvement of different CYPs in methadone metabolism [13][14][15][16][17][18][19]. Most of these in vitro studies focused on th...
Aims Gender differences are known to occur in the pharmacokinetics of many drugs. Mechanisms may include differences in body composition, body weight, cardiac output, hormonal status, and use of different co-medications. Recently subtle gender-dependent differences in cytochrome P450 (CYP) 3A-dependent metabolism have been demonstrated. Buprenorphine N-dealkylation to norbuprenorphine is primarily performed by CYP3A. We therefore asked whether gender-dependent differences occur in the pharmacokinetics of buprenorphine. Methods A retrospective examination was made of control (buprenorphine/naloxone-only) sessions from a number of drug interaction studies between buprenorphine and antiretroviral drugs. Twenty males and eleven females were identified who had a negative cocaine urine test prior to participation in the control session and were all on the same maintenance dose (16/4 mg) of sublingual buprenorphine/naloxone. Pharmacokinetic data from their control sessions (buprenorphine/naloxone only) were sorted by gender and compared using the two-sample t-test. Results Females had significantly higher area under the plasma concentration curve (AUC) and maximum plasma concentrations for buprenorphine, norbuprenorphine and norbuprenorphine-3-glucuronide. AUCs relative to dose per body weight and surface area were significantly higher for only norbuprenorphine. AUCs relative to lean body mass were, however, not significantly different. Conclusions Gender-related differences exist in the pharmacokinetics of buprenorphine; differences in body composition appear to have a major impact; differences in CYPA-dependent metabolism may also contribute.
Neonatal abstinence syndrome (NAS) is a condition affecting newborns that are exposed to an opioid in utero. In a randomized, controlled trial assessing the efficacy of buprenorphine and morphine in NAS, blood samples were analyzed from a subset of patients receiving buprenorphine along with NAS scores. The data were used to validate and adapt an existing model of buprenorphine in neonates and to identify relationships between buprenorphine or norbuprenorphine pharmacokinetics (PK) and efficacy or safety. The time to NAS stabilization was found to decrease with increasing buprenorphine exposure. This pharmacokinetic-pharmacodynamic (PK-PD) relationship was able to be quantified and adequately described with a mathematical model. The findings confirm a previous PK model of buprenorphine and extend the model to describe the PK of norbuprenorphine and to identify a novel PK-PD relationship of buprenorphine in NAS. This model will allow optimization of dosing strategies in future clinical trials.
The opioid analgesic oxycodone is widely abused and increasingly associated with overdose deaths. A sensitive analytical method was developed for oxycodone and its metabolites, noroxycodone and oxymorphone, in human plasma, urine (±enzymatic hydrolysis at 50°C for 16 h) and liver microsomes (HLMs). Liquid-liquid extraction was followed by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. The calibration range was 0.2-250 ng/mL for plasma and HLM and 10-5000 ng/mL for urine. Intra- and interrun accuracies were within 13.3% of target; precisions were within 12.8% for all matrices. Recoveries from plasma were: oxycodone, 75.6%; noroxycodone, 37.4% and oxymorphone, 18.2%. Analytes exhibited room temperature stability in plasma and urine up to 24 h, and freeze-thaw stability in plasma up to three cycles. In 24-h hydrolyzed urine from subjects administered intranasal oxycodone (30 mg/70 kg, n = 5), mean concentrations (ng/mL) and % daily doses excreted were: oxycodone, 1150, 6.53%; noroxycodone, 1330, 7.81% and oxymorphone, 3000, 17.1%. Oxycodone incubated with HLM produced more noroxycodone than oxymorphone. With a panel of recombinant human cytochrome P450s (CYPs), CYP2C18 and CYP3A4 produced the most noroxycodone, whereas CYP2D6 produced the most oxymorphone. These results demonstrate a new method suitable for both in vivo and in vitro metabolism and pharmacokinetic studies of oxycodone.
Buprenorphine is an essential component of analgesic protocols in common marmosets (Callithrix jacchus). The use of buprenorphine HCl (BUP) and sustained-release buprenorphine (BSR) formulations has become commonplace in this species, but the pharmacokinetics have not been evaluated. Healthy adult (age, 2.4 to 6.8 y; 6 female and 6 male) common marmosets were enrolled in this study to determine the pharmacokinetic parameters, plasma concentration–time curves, and any apparent adverse effects of these compounds. Equal numbers of each sex were randomly assigned to receive BUP (0.02 mg/kg IM) orBSR (0.2 mg/kg SC), resulting in peak plasma concentrations (mean ± 1 SD) of 15.2 ± 8.1 and 2.8 ± 1.2 ng/mL, terminal phase t1/2 of 2.2 ± 1.0 and 32.6 ± 9.6 h, and AUC0-last of 16.1 ± 3.7 and 98.6 ± 42.7 ng×h/mL. The plasma concentrations of buprenorphine exceeded the proposed minimal therapeutic threshold (0.1 ng/mL) at 5 and 15 min after BUP and BSR administration,showing that both compounds are rapid-acting, and remained above that threshold through the final time points of 8 and 72h. Extrapolation of the terminal elimination phase of the mean concentration–time curves was used to develop the clinical dosing frequencies of 6 to 8 h for BUP and 3.0 to 3.5 d for BSR. Some adverse effects were observed after the administration of BUP to common marmosets in this study, thus mandating judicious use in clinical practice. BSR provided a safe, long-acting option for analgesia and therefore can be used to refine analgesic protocols in this species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.