Sustainable development (SD) evaluations have attracted considerable attention from governments and scientific communities around the world. The objective and quantitative calculation of the importance of sustainable assessment indicators is a key problem in the accurate evaluation of SD. Traditional methods fail to quantify the coupling effects among indicators. This paper presents a weight determination approach based on the global sensitivity analysis algorithm known as the extended Fourier amplitude sensitivity test (EFAST). This method is efficient and robust and is not only able to quantify the sensitivity of the evaluation indictors to the target, but can also quantitatively describe the uncertainties among the indictors. In this paper, we analyze the sensitivity of 18 indicators in a multi-index comprehensive evaluation model and weigh the indicators in the system according to their importance. To verify the feasibility and advantages of this new method, we compare the evaluation result with the traditional entropy method. The comparison shows that the EFAST algorithm can provide greater detail in an SD evaluation. Additionally, the EFAST algorithm is more specific in terms of quantitative analysis and comprehensive aspects and can more effectively distinguish the importance of indicators.
The Sustainable Development Goals (SDGs) of the United Nations cover all living things on Earth. However, downscaling the SDGs to regional scales for implementation is challenging. In the paper, we convert the general SDGs into tangible and actionable goals, targets and indicators for use in integrated river basin management (IRBM). Further, we propose a decision support framework that can be used to support IRBM implementation based on the SDGs. The framework offers a context for open thinking in which IRBM decision makers envision socioeconomic and ecosystem goals and the development tracks of a river basin and explore the various paths that can be followed to reach the goals. In particular, indicators are proposed for use in IRBM, which consider five aspects of river basins, specifically water, ecosystems, socioeconomic development, ability and data. To enable decision-making that promotes progress toward the goals, five scenarios, 17 sub-scenarios and 29 key parameters are provided that form a diverse set of scenarios corresponding to specific decision schemes. Moreover, these scenarios, sub-scenarios and parameters consider future uncertainties and both engineering and non-engineering measures that can be taken to achieve the co-development of human and natural factors in a basin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.