Many dehazing methods have proven to be effective in removing haze out of the hazy image, but few of them are adaptive in handling the dense haze. In this paper, based on the angle of polarization (AOP) distribution analysis we propose a kind of polarimetric dehazing method, which is verified to be capable of enhancing the contrast and the range of visibility of images taken in dense haze substantially. It is found that the estimating precision of the intensity of airlight is a key factor which determines the dehazing quality, and fortunately our method involves a high precision estimation inherently. In the experiments a good dehazing performance is demonstrated, especially for dense haze removal. We find that the visibility can be enhanced at least 74%. Besides, the method can be used not only in dense haze but also in severe sea fog.
A static full-Stokes Fourier transform imaging spectropolarimeter incorporating a liquid-crystal polarization modulator (LPM) and birefringent shearing interferometer (BSI) is reported. It can decode the polarization information at each wavelength along the spatial dimension of a two-dimensional data array. The LPM has a high-speed time-division architecture and employs two ferroelectric liquid crystals and two wave plates to produce four polarization states, providing full-Stokes polarimetric information with a high signal-to-noise ratio. The BSI comprises two birefringent crystal plates and generates an optical path difference with good linear distribution for broadband interference, allowing a fast and high-precision spectral recovery. The optimized design of LPM and BSI are introduced in detail. Subsequently, the signal reconstruction is verified through simulations and experiments. The proposed scheme is highly efficient, exhibits a higher spectral resolution, and constitutes a compact technical approach to realize high-dimensional optical measurement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.