Selecting the best planting area for blueberries is an essential issue in agriculture. To better improve the effectiveness of blueberry cultivation, a machine learning-based classification model for blueberry ecological suitability was proposed for the first time and its validation was conducted by using multi-source environmental features data in this paper. The sparrow search algorithm (SSA) was adopted to optimize the CatBoost model and classify the ecological suitability of blueberries based on the selection of data features. Firstly, the Borderline-SMOTE algorithm was used to balance the number of positive and negative samples. The Variance Inflation Factor and information gain methods were applied to filter out the factors affecting the growth of blueberries. Subsequently, the processed data were fed into the CatBoost for training, and the parameters of the CatBoost were optimized to obtain the optimal model using SSA. Finally, the SSA-CatBoost model was adopted to classify the ecological suitability of blueberries and output the suitability types. Taking a study on a blueberry plantation in Majiang County, Guizhou Province, China as an example, the findings demonstrate that the AUC value of the SSA-CatBoost-based blueberry ecological suitability model is 0.921, which is 2.68% higher than that of the CatBoost (AUC = 0.897) and is significantly higher than Logistic Regression (AUC = 0.855), Support Vector Machine (AUC = 0.864), and Random Forest (AUC = 0.875). Furthermore, the ecological suitability of blueberries in Majiang County is mapped according to the classification results of different models. When comparing the actual blueberry cultivation situation in Majiang County, the classification results of the SSA-CatBoost model proposed in this paper matches best with the real blueberry cultivation situation in Majiang County, which is of a high reference value for the selection of blueberry cultivation sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.