Silver nanoparticles (NPs) which could be kept in solid form and were easily stored without degeneration or oxidation at room temperature for a long period of time were synthesized by a simple and environmentally friendly wet chemistry method in an aqueous phase. Highly stable dispersions of aqueous silver NP inks, sintered at room temperature, for printing highly conductive tracks (∼8.0 μΩ cm) were prepared simply by dispersing the synthesized silver NP powder in water. These inks are stable, fairly homogeneous and suitable for a wide range of patterning techniques. The inks were successfully printed on paper and polyethylene terephthalate (PET) substrates using a common color printer. Upon annealing at 180 °C, the resistivity of the printed silver patterns decreased to 3.7 μΩ cm, which is close to twice that of bulk silver. Various factors affecting the resistivity of the printed silver patterns, such as annealing temperature and the number of printing cycles, were investigated. The resulting high conductivity of the printed silver patterns reached over 20% of the bulk silver value under ambient conditions, which enabled the fabrication of flexible electronic devices, as demonstrated by the inkjet printing of conductive circuits of LED devices.
Highly flexible AgNW/PI transparent film heaters with superior mechanical and thermal response behavior were fabricated using an all solution-coating method.
Flexible transparent conductive films (TCFs) are used in a variety of optoelectronic devices. However, their use is limited due to poor thermostability. We report hybrid TCFs incorporation in both aluminum-doped zinc oxide (AZO) and silver nanowires (AgNWs). The layered AZO/AgNWs/AZO structure was deposited onto a transparent polyimide (PI) substrate and displayed excellent thermostability. When heated to 250 °C for 1 h, the change in resistivity (Rc) was less than 10% (Rc of pure AgNW film > 500) while retaining good photoelectric properties (Rsh = 8.6 Ohm/sq and T = 74.4%). Layering the AgNW network between AZO films decreased the surface roughness (Rrms < 8 nm) and enhances the mechanical flexibility of the hybrid films. The combination of these characteristics makes the hybrid film an excellent candidate for substrates of novel flexible optoelectronic devices which require high-temperature processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.