Piezoelectric transducers are convenient enablers for generating and receiving Lamb waves for damage detection. Fatigue cracks are one of the most common causes for the failure of metallic structures. Increasing emphasis on the integrity of critical structures creates an urgent need to monitor structures and to detect cracks at an early stage to prevent catastrophic failures. This paper presents a two-dimensional (2D) cross-correlation imaging technique that can not only detect a fatigue crack but can also precisely image the fatigue cracks in metallic structures. The imaging method was based on the cross-correlation algorithm that uses incident waves and the crack-scattered waves of all directions to generate the crack image. Fatigue testing for crack generation was then conducted in both an aluminum plate and a stainless-steel plate. Piezoelectric wafer transducer was used to actuate the interrogating Lamb wave. To obtain the scattered waves as well as the incident waves, a scanning laser Doppler vibrometer was adopted for acquiring time-space multidimensional wavefield, followed with frequency-wavenumber processing. The proof-of-concept study was conducted in an aluminum plate with a hairline fatigue crack. A frequency-wavenumber filtering method was used to obtain the incident wave and the scattered wave wavefields for the cross-correlation imaging. After this, the imaging method was applied to evaluate cracks on a stainless-steel plate generated during fatigue loading tests. The presented imaging method showed successful inspection and quantification results of the crack and its growth.
This paper presents a non-contact air-coupled Lamb wave imaging technique using a two-dimensional (2D) cross-correlation method that not only detects the damage but also precisely quantifies for orientations and sizes. The air coupled transducers (ACT) is used together with a scanning laser Doppler vibrometer (SLDV) for sensing, making a fully non-contact Lamb wave system used for this study. We first show that single-mode Lamb wave actuation can be achieved by the air-coupled transducer (ACT) based on the Snell's law. Detailed study and characterization of the directional ACT Lamb waves are conducted. For damage detection, a 2D cross-correlation imaging technique that uses the damage introduced scattered waves of all directions is proposed for correlating with the incident waves. The frequency-wavenumber filtering technique is used to implement the acquisition of the scatted waves and incident waves respectively. In the end application to notches with various orientations and various sizes in terms of depth and length is given. The results show the proposed technique can precisely imaging the damages and can quantitatively evaluate the damage size in terms of length and depth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.