In their attempt to develop domain theory in situ T 0 spaces, Zhao and Ho introduced a new topology defined by irreducible sets of a resident topological space, called the SI-topology. Notably, the SI-topology of the Alexandroff topology of posets is exactly the Scott topology, and so the SI-topology can be seen as a generalisation of the Scott topology in the context of general T 0 spaces. It is well known that the convergence structure that induces the Scott topology is the Scott-convergence-also known as lim-inf convergence by some authors. Till now, it is not known which convergence structure induces the SI-topology of a given T 0 space. In this paper, we fill in this gap in the literature by providing a convergence structure, called the SI-convergence structure, that induces the SI-topology. Additionally, we introduce the notion of I-continuity that is closely related to the SI-convergence structure, but distinct from the existing notion of SI-continuity (introduced by Zhao and Ho earlier). For SI-continuity, we obtain here some equivalent conditions for it. Finally, we give some examples of non-Alexandroff SI-continuous spaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.