). † These authors contributed equally to this work. SUMMARYAnti-silencing function1 (ASF1) is an evolutionarily conserved histone chaperone. Studies in yeast and animals indicate that ASF1 proteins play important roles in various chromatin-based processes, including gene transcription, DNA replication and repair. While two genes encoding ASF1 homologues, AtASF1A and AtASF1B, are found in the Arabidopsis genome, their function has not been studied. Here we report that both AtASF1A and AtASF1B proteins bind histone H3, and are localized in the cytoplasm and the nucleus. Loss-offunction of either AtASF1A or AtASF1B did not show obvious defects, whereas simultaneous knockdown of both genes in the double mutant Atasf1ab drastically inhibited plant growth and caused abnormal vegetative and reproductive organ development. The Atasf1ab mutant plants exhibit cell number reduction, S-phase delay/arrest, and reduced polyploidy levels. Selective up-regulation of expression of a subset of genes, including those involved in S-phase checkpoints and the CYCB1;1 gene at the G 2 -to-M transition, was observed in Atasf1ab. Furthermore, the Atasf1ab-triggered replication fork stalling constitutively activates the DNA damage checkpoint and repair genes, including ATM, ATR, PARP1 and PARP2 as well as several genes of the homologous recombination (HR) pathway but not genes of the non-homologous end joining (NHEJ) pathway. In spite of the activation of repair genes, an increased level of DNA damage was detected in Atasf1ab, suggesting that defects in the mutant largely exceed the available capacity of the repair machinery. Taken together, our study establishes crucial roles for the AtASF1A and AtASF1B genes in chromatin replication, maintenance of genome integrity and cell proliferation during plant development.
ANTI-SILENCING FUNCTION 1 (ASF1) is an evolutionarily conserved histone chaperone involved in diverse chromatin-based processes in eukaryotes. Yet, its role in transcription and the underlying molecular mechanisms remain largely elusive, particularly in plants. Here, we show that the Arabidopsis thaliana ASF1 homologous genes, AtASF1A and AtASF1B, are involved in gene transcription activation in response to heat stress. The Atasf1ab mutant displays defective basal as well as acquired thermotolerance phenotypes. Heat-induced expression of several key genes, including the HEAT SHOCK PROTEIN (HSP) genes Hsp101, Hsp70, Hsa32, Hsp17.6A and Hsp17.6B-CI, and the HEAT SHOCK FACTOR (HSF) gene HsfA2 but not HsfB1 is drastically impaired in Atasf1ab as compared with that in wild type. We found that AtASF1A/B proteins are recruited onto chromatin, and their enrichment is correlated with nucleosome removal and RNA polymerase II accumulation at the promoter and coding regions of HsfA2 and Hsa32 but not HsfB1. Moreover, AtASF1A/B facilitate H3K56 acetylation (H3K56ac), which is associated with HsfA2 and Hsa32 activation. Taken together, our study unravels an important function of AtASF1A/B in plant heat stress response and suggests that AtASF1A/B participate in transcription activation of some but not all HSF and HSP genes via nucleosome removal and H3K56ac stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.