Telomerase activation through the induction of its catalytic component TERT is essential in carcinogenesis. The regulatory mechanism and clinical significance underlying cancer-specific TERT expression have been extensively investigated in various human malignancies, but little is known about these in Merkel cell carcinoma (MCC), an aggressive neuroendocrine skin tumor. Here we addressed these issues by determining TERT promoter mutations, gene amplification, mRNA expression and association with clinical variables in MCC. TERT mRNA was expressed in 6/6 MCC cell lines and 41 of 43 tumors derived from 35 MCC patients. Telomerase activity was detectable in all 6 cell lines and 11 tumors analyzed. TERT promoter mutations were identified in 1/6 cell lines and 4/35 (11.4%) MCC cases. The mutation exhibited UV signature and occurred in sun-exposed areas. Increased TERT gene copy numbers were observed in 1/6 cell lines and 11/14 (79%) tumors, and highly correlated with its mRNA expression (r = 0.7419, P = 0.0024). Shorter overall survival was significantly associated with higher TERT mRNA levels in MCC patients (P = 0.032). Collectively, TERT expression and telomerase activity is widespread in MCC, and may be attributable to TERT promoter mutations and gene amplification. Higher TERT expression predicts poor patient outcomes.
The prognosis of non-small cell lung cancer (NSCLC) is poor, since it has often metastasized to distant organs by the time of diagnosis. Therefore, biomarkers predicting metastasis are crucial. miRNAs play important roles in the regulation of different tumor cell processes, including metastasis. We recently showed that miRNA-214 is linked to a radioresistant phenotype of NSCLC. miRNA-214 has been linked to metastasis in other tumor types. Therefore, we examined the role of miRNA-214 in the metastatic potential of NSCLC. We showed that downregulation of miRNA-214 increased invasive potential, and conversely, overexpression of miRNA-214 decreased invasiveness of NSCLC cells in vitro. Gene expression and bioinformatic analyses of NSCLC cells with ablated miRNA-214, identified a number of metastasis-related target genes, including pregnancy-associated plasma protein A (PAPP-A), alpha protein kinase 2 (ALPK2), cyclin-dependent kinase 6 (CDK6) and tumor necrosis-factor alpha-induced protein 3 (TNFAIP3). These were validated on mRNA and protein level to be regulated by miRNA-214. Through immunoprecipitation we showed that only ALPK2 is directly regulated by miRNA-214. We also examined the protein expression of these four genes in NSCLC tumors with respect to metastatic potential. These results showed that NSCLC tumors express these proteins at moderate-high levels in the nucleus, cytoplasm and/or plasma membrane although with no significant correlation to the overall survival or the metastatic potential of the patients. However, we also showed that the membrane-localized PAPP-A had a higher expression level compared to the cytoplasm-localized. In conclusion, we show that low miRNA-214 expression is linked to a higher invasive potential of NSCLC cells.
Abstract. Multiple endocrine neoplasia (MEN) is defined as concurrent neoplasia or hyperplasia in more than one endocrine gland. MEN is well known in humans and has also been reported in small animals. We report on a dog family of a mixed breed with Alaskan malamute as a major influence, where three members developed thyroid carcinomas and another dog had clinical signs mimicking the other three but without a confirmed diagnosis. The age of onset of the tumour was between 96-109 months. Clinical, biochemical and immunohistochemical examinations revealed that the affected individuals typically demonstrated symptoms including calcitonin positive thyroid cancer, hypothyroidism and chronic dermatitis. In addition, elevated serum calcium and multinodular adrenocortical hyperplasia were demonstrated in a single member. The diagnosis observed is similar to the familial form of medullary thyroid carcinoma (FMTC) in human. This is the first report of FMTC in dog. Up to 95% of FMTC and MEN2 is known to be caused by activating mutations in the RET gene. The dog Ret gene was analysed as a candidate in this pedigree. The complete dog Ret genomic sequence was predicted in silico. The lack of demonstratable Ret mutation suggests the involvement of alternative predisposing mutation in this pedigree. The unique occurrence of familial MTC makes this potentially an important model in further defining the genetic basis of MTC.
Human cytomegalovirus (HCMV) infection results in the production of virions, dense bodies (DBs) and non-infectious enveloped particles, all of which incorporate proteins and RNAs that can be transferred to host cells. Here, we investigated whether virions and DBs also carry microRNAs (miRNAs) and assessed their delivery and functionality in cells. Human lung fibroblasts (MRC-5) were infected with the HCMV strain AD169, and conditioned cell culture medium was collected and centrifuged. The pellets were treated with RNase-ONE, and the virions and DBs were purified with a potassium tartrate–glycerol gradient and dialysed. The virions and DBs were incubated with micrococcal nuclease, DNA and RNA were extracted and then analysed with TaqMan PCR assays, while the proteins were examined with Western blots. To assess the delivery of miRNAs to cells and their functionality, virions and DBs were irradiated with UV light. The purity of the virions and DBs was confirmed by typical morphology, the presence of the structural protein pp65 and the HCMV genome, the ability to infect MRC-5 cells and the absence of the host genome. RNA analysis revealed the presence of 14 HCMV-encoded miRNAs (UL22A-5p, US25-1-5p, UL22A-3p, US5-2-3p, UL112-3p, US25-2-3p, US25-2-5p, US33-3p, US5-1, UL36-5p, US4-5p, UL36-3p, UL70-5p and US25-1-3p), HCMV immediate-early mRNA and long non-coding RNA2.7, moreover, two host-encoded miRNAs (hsa-miR-218-5p and hsa-miR-21-5p) and beta-2-microglobulin RNA. UV-irradiated virions and DBs delivered viral miRNAs (US25-1-5p and UL112-3p) to the host cells, and miR-US25-1-5p was functional in a luciferase reporter assay. We conclude that virions and DBs carry miRNAs that are biologically functional and can be delivered to cells, which may affect cellular processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.