Shortening of oblique left ventricular (LV) fibers results in torsion. A unique relationship between volume and torsion is therefore expected, and the effects of load and contractility on torsion should be predictable. However, volume-independent behavior of torsion has been observed, and the effects of load on this deformation remain controversial. We used magnetic resonance imaging (MRI) with tagging to study the relationships between load and contractility, and torsion. In ten isolated, blood-perfused canine hearts, ejection was controlled by a servopump: end-diastolic volume (EDV) was controlled by manipulating preload parameters and end-systolic volume (ESV) by manipulating afterload using a three-element windkessel model. MRI was obtained at baseline, two levels of preload alteration, two levels of afterload alteration, and dobutamine infusion. An increase in EDV resulted in an increase in torsion at constant ESV (preload effect), whereas an increase in ESV resulted in a decrease in torsion at constant EDV (afterload effect). Dobutamine infusion increased torsion in association with an increase in LV peak-systolic pressure (PSP), even at identical EDV and ESV. Multiple regression showed correlation of torsion with preload (EDV), afterload (ESV), and contractility (PSP; r = 0.67). Furthermore, there was a close linear relationship between torsion and stroke volume (SV) and ejection fraction (EF) during load alteration, but torsion during dobutamine infusion was greater than expected for the extent of ejection. Preload and afterload influence torsion through their effects on SV and EF, and there is an additional direct inotropic effect on torsion that is independent of changes in volume but rather is force dependent. There is therefore potential for the torsion-volume relation to provide a load-independent measure of contractility that could be measured noninvasively.
Background
Disulfiram has been an effective cocaine addiction pharmacotherapy, and one of its possible mechanisms of efficacy is through copper chelation and inhibition of an enzyme involved in catecholamine metabolism, dopamine β-hydroxylase (DβH), which converts dopamine to norepinephrine. A variant in the gene encoding DβH leads to reduced DβH activity and as such, disulfiram may not be an effective treatment of cocaine dependence for individuals with this variant. This study explored that potential matching.
Methods
Seventy-four cocaine and opioid co-dependent (DSM-V) subjects were stabilized on methadone for two weeks and subsequently randomized into disulfiram (250 mg/day, N =34) and placebo groups (N =40) for 10 weeks. We genotyped the DBH gene polymorphism, −1021C/T (rs1611115), that reduces DβH enzyme levels and evaluated its role for increasing cocaine free urines with disulfiram.
Results
Using repeated measures analysis of variance, corrected for population structure, disulfiram pharmacotherapy reduced cocaine positive urines from 80% to 62% (p = .0001), and this disulfiram efficacy differed by DBH genotype group. Patients with the normal DβH level genotype dropped from 84% to 56% on disulfiram (p = .0001), while those with the low DBH level genotype showed no disulfiram effect.
Conclusions
This study indicates that a patient’s DBH genotype could be used to identify a subset of individuals for which disulfiram treatment may be an effective pharmacotherapy for cocaine dependence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.