Due to their complex microstructures, the research on the static and dynamic behaviors of triangular honeycomb sandwich panels (triangular HSPs) is limited. In this study, the effective plate properties of triangular HSP was obtained by the homogenizing of the unit cell, and then the input to a VAM-based two-dimensional equivalent plate model (2D-EPM) to perform static and dynamic analyses. The accuracy of the proposed model for predicting the equivalent stiffness of the triangular HSP was verified by three-point bending experiments of 3D-printed specimens. Then, the static displacement, global buckling, and free vibrations predicted by 2D-EPM were verified with the results from three-dimensional finite element model simulations under various boundary conditions. The influences of structural parameters (including angle, core wall thickness, and cell side length of the unit cell) on the static and dynamic characteristics of triangular HSPs were also investigated, which can provide a useful tool for the modeling and evaluation of triangular HSPs under different conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.