This paper investigates the effect of two different welding methods, direct welding (DW) and vacuum furnace welding (VFW), on flip-chip light-emitting diode (FC-LED) filament properties. Shearing force, SEM, steady-state voltage, steady-state luminous flux, and change of photoelectric performance with aging time were employed to characterize the differences in filament properties between the two welding methods. The shearing test revealed that the average shearing force of the VFW group was higher than that of the DW group, but the two groups followed the standard. Furthermore, the microstructure of the VFW group fault was more smoother, and the voids were fewer and smaller based on the SEM test results. The steady-state voltage and luminous flux revealed that the VFW group had a more concentrated voltage and a higher luminous flux. The aging data revealed that the steady-state voltage change rate of both groups was not very different, and both luminous flux maintenance rates of the VFW group were higher than those of the DW group, but all were within the standard range. In conclusion, if there is a higher requirement for filament in a practical application, such as the filament is connected in series or in parallel and needs a higher luminous flux, it can be welded using vacuum furnace welding. If the focus is on production efficiency and the high performance of filaments is not required, direct welding can be used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.