In this paper, Lignosus rhinocerotis (Cooke) Ryvarden (L. rhinocerotis) cultivated in rice medium (LRR) and in sawdust medium (LRS) was harvested. Then, in terms of the LRR, LRS, and wild L. rhinocerotis (LRW), the total flavonoid contents, total polyphenol contents, total polysaccharide contents, and metabolites were detected; antioxidants of their aqueous extracts and anti-inflammatory of their polysaccharides were performed. In addition, the possible mechanism of the polysaccharides of L. rhinocerotis inhibiting lung damage was elucidated. The results showed that 32 compounds were characterized in L. rhinocerotis, including flavonoids, terpenoids, lignans, and steroids and there were 20 compounds in cultivated and wild L. rhinocerotis; LRR has the highest total polyphenol and flavonoid contents, as well as ABTS and DPPH scavenging capacity. The total polysaccharide contents and the FRAP scavenging capacity of wild L. rhinocerotis were higher than those of cultivated L. rhinocerotis. The inhibition of polysaccharides of LRW (PLRW) on LPS-induced MRC-5 damage was stronger than that of the polysaccharides from cultivated L. rhinocerotis. The PLRW may alleviate lung damage by inhibiting the NLRP3 pathway and thereby suppressing the inflammatory response. In summary, both cultivated and wild L. rhinocerotis are abundant in bioactive components and have antioxidant and anti-inflammatory activities.
Stahlianthus involucratus (S. involucratus) has anti-inflammatory, antinociceptive, and antipyretic activities; however, there are no literature reports on its antioxidant capacity. This study presents a comparative assessment of the polyphenols contents, flavonoids contents, and antioxidant activity of the aqueous and methanol extracts of S. involucratus (ASI and MSI). Moreover, the expression of oxidative stress-related genes in H2O2-induced H9c2 cells pretreated with the MSI was measured by RT-qPCR, and furthermore, MSI were characterized by UHPLC-Q-Orbitrap-MS/MS. The results indicated that the MSI had higher antioxidant contents and antioxidant capacity, and MSI could inhibit H2O2-induced oxidative stress in H9c2 cells by activating the Nrf2/HO-1 pathway. UHPLC-Q-Orbitrap-MS/MS characterized 15 phenolic compounds from the MSI. In conclusion, S. involucratus has the potential antioxidant capacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.