Patterned surface microstructures over a common silicon wafer are constructed by a single-mask ultraviolet (UV) photolithography and a dual-step wet potassium hydroxide etching. Oriented surface contours such as aspherical refractive profiles, diffractive phase steps, or even the composite appearance shaped by combining both refractive and diffractive microprofiles can be accurately predicted and finely configured through computational fitting. This critical operation involves a careful adjustment of the location of silicon microholes with suitable apertures and concave depths so as to outline a needed square microwindow map defined by the single-mask UV photolithography. This approach leads to an aspherical surface or phase steps with required roughness based on a greedy algorithm developed in-house. The obtained micro-optical films can be effectively used to transform common laser beams with a typical Gaussian profile into patterned beams with various complicated wavefronts. The proposed method highlights a low-cost development of adaptive optical imaging by constructing relatively complicated wavefront or objective circumstances for quantitatively evaluating imaging efficiency. The technology should find typical applications in antilaser interference or attack imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.