In the most promising new window materials, the light-blocking property of the state-of-the-art transparent polycrystalline ceramics is still located in the UV range, which undoubtedly limits their applications. Herein, a transparent Y 2 Zr 2 O 7 :Tb (YZO:Tb) ceramic for light-shielding windows was prepared by a solid-state reaction and vacuum sintering method. Two simple and efficient routes, with doping concentrations varying and air-annealing temperatures regulating, were developed for the first time to control the content of defect clustersenabling the optical cutoff waveband of these ceramics spanning from UV and BV to green light. These defect clusters generated from an airannealing process were proposed for the relevant reaction mechanisms concerning light erasure behavior. The controllably tailoring of optical cutoff wavelength from Tb single-doped YZO ceramics, adjusted by defect clusters, may open a novel door to develop lanthanidedoped transparent ceramics for wide-range tunable light-shielding windows.
Attaining effective warm white light emitting in functionally advantageous transparent polycrystalline ceramics is vitally important to guarantee the development of both human and botanical systems. In response to this aim, a series of Dy3+‐doped Y2Zr2O7 (YZO) transparent ceramics were prepared via a solid‐state reaction and vacuum sintering approach in this work. These fabricated ceramics show high transparency, where the in‐line transmittance at 700 nm is about 76%, which is very close to the theoretical limit (78%). In addition, under the excitation of UV light sources (358 and 384 nm), strong warm white light emissions were observed in these YZO:Dy transparent ceramics. The corresponding photoluminescence characteristics and mechanisms of YZO:Dy ceramics are investigated carefully. The Dy‐doped YZO ceramics integrate with high transparency and UV‐excitable warm white light emission properties, making them promising light‐emitting converter materials for light‐emitting source applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.