A flexible thermoelectric device has been considered as a competitive candidate for powering wearable electronics. Here, we fabricated an n-type Ag2Se/Ag composite film on a flexible nylon substrate using vacuum-assisted filtration and a combination of cold and hot pressing. By optimising the Ag/Se ratio and the sequential addition and reaction time of AA, an excellent power factor of 2277.3 μW∙m−1 K−2 (corresponding to a ZT of ~0.71) at room temperature was achieved. In addition, the Ag2Se/Ag composite film exhibits remarkable flexibility, with only 4% loss and 10% loss in electrical conductivity after being bent around a rod of 4 mm radius for 1000 cycles and 2000 cycles, respectively. A seven-leg flexible thermoelectric device assembled with the optimised film demonstrates a voltage of 19 mV and a maximum power output of 3.48 μW (corresponding power density of 35.5 W m−2) at a temperature difference of 30 K. This study provides a potential path to design improved flexible TE devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.