Inspired by the application of CycleGAN networks to the image style conversion problem Zhu et al. (2017), this paper proposes an end-to-end network, DefogNet, for solving the single-image dehazing problem, treating the image dehazing problem as a style conversion problem from a fogged image to a nonfogged image, without the need to estimate a priori information from an atmospheric scattering model. DefogNet improves on CycleGAN by adding a cross-layer connection structure in the generator to enhance the network’s multiscale feature extraction capability. The loss function was redesigned to add detail perception loss and color perception loss to improve the quality of texture information recovery and produce better fog-free images. In this paper, the novel Defog-SN algorithm is presented. This algorithm adds a spectral normalization layer to the discriminator’s convolution layer to make the discriminant network conform to a 1-Lipschitz continuum and further improve the model’s stability. In this study, the experimental process is completed based on the O-HAZE, I-HAZE, and RESIDE datasets. The dehazing results show that the method outperforms traditional methods in terms of PSNR and SSIM on synthetic datasets and Avegrad and Entropy on naturalistic images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.