The discovery of functional molecules is an expensive and time-consuming process, exemplified by the rising costs of small molecule therapeutic discovery. One class of techniques of growing interest for early-stage drug discovery is de novo molecular generation and optimization, catalyzed by the development of new deep learning approaches. 1 These techniques can suggest novel molecular structures intended to maximize a multi-objective function, e.g., suitability as a therapeutic against a particular target, 2 without relying on brute-force exploration of a chemical space. 3 However, the utility of these approaches is stymied by ignorance of synthesizability. To highlight the severity of this issue, we use a data-driven computer-aided synthesis planning program 4 to quantify how often molecules proposed by state-of-the-art generative models cannot be readily synthesized. Our analysis demonstrates that there are several tasks for which these models generate unrealistic molecular structures despite performing well on popular quantitative benchmarks. Synthetic complexity heuristics can successfully bias generation toward synthetically-tractable chemical space, although doing so 1 arXiv:2002.07007v1 [q-bio.QM] 17 Feb 2020 necessarily detracts from the primary objective. This analysis suggests that to improve the utility of these models in real discovery workflows, new algorithm development is warranted.
Summary Deep learning is catalyzing a scientific revolution fueled by big data, accessible toolkits, and powerful computational resources, impacting many fields, including protein structural modeling. Protein structural modeling, such as predicting structure from amino acid sequence and evolutionary information, designing proteins toward desirable functionality, or predicting properties or behavior of a protein, is critical to understand and engineer biological systems at the molecular level. In this review, we summarize the recent advances in applying deep learning techniques to tackle problems in protein structural modeling and design. We dissect the emerging approaches using deep learning techniques for protein structural modeling and discuss advances and challenges that must be addressed. We argue for the central importance of structure, following the “sequence structure function” paradigm. This review is directed to help both computational biologists to gain familiarity with the deep learning methods applied in protein modeling, and computer scientists to gain perspective on the biologically meaningful problems that may benefit from deep learning techniques.
Machine learning for therapeutics is an emerging field with incredible opportunities for innovation and expansion. Despite the initial success, many key challenges remain open. Here, we introduce Therapeutics Data Commons (TDC), the first unifying framework to systematically access and evaluate machine learning across the entire range of therapeutics. At its core, TDC is a collection of curated datasets and learning tasks that can translate algorithmic innovation into biomedical and clinical implementation. To date, TDC includes machine learning-ready datasets from learning tasks, spanning the discovery and development of safe and effective medicines. TDC also provides an ecosystem of tools, libraries, leaderboards, and community resources, including data functions, strategies for systematic model evaluation, meaningful data splits, data processors, and molecule generation oracles. All datasets and learning tasks are integrated and accessible via an open-source library. We envision that TDC can facilitate algorithmic and scientific advances and accelerate development, validation, and transition into production and clinical implementation. TDC is a continuous, open-source initiative, and we invite contributions from the research community. TDC is publicly available at https://tdcommons.ai.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.