Antibody therapies currently target only extracellular antigens. A strategy to recognize intracellular antigens is to target peptides presented by immune HLA receptors. ESK1 is a human, T-cell receptor (TCR)-mimic antibody that binds with sub-nanomolar affinity to the RMF peptide from the intracellular oncoprotein Wilms Tumor 1 (WT1) in complex with HLA-A*02:01. ESK1 is therapeutically effective in mouse models of WT1+ human cancers. TCR-based therapies have been presumed to be restricted to one HLA subtype. The mechanism for the specificity and high affinity of ESK1 is unknown. We show in a crystal structure that ESK1 Fab binds to RMF/HLA-A*02:01 in a different mode than TCRs. From the structure, we predict and then experimentally confirm high affinity binding with multiple other HLA-A*02 subtypes, broadening the potential patient pool for ESK1 therapy. Using the crystal structure, we also predict potential off-target binding that we experimentally confirm. Our results demonstrate how protein structure information can contribute to personalized immunotherapy.
To improve the treatment of breast cancer, there has been a need for alternative aromatase inhibitors (AIs) that bring about adequate aromatase inhibition, while limiting side effects. Since two tamoxifen metabolites have been documented as AIs, we tested a wide range of tamoxifen metabolites on aromatase in order to better understand structural interactions with aromatase and constructed structure-function relationships as a first step toward the development of novel inhibitors. The ability of ten tamoxifen metabolites to inhibit recombinant aromatase (CYP19) was tested using microsomal incubations. The selectivity of the most potent aromatase inhibitor identified, norendoxifen, was characterized by studying its ability to inhibit CYP450 enzymes important in clinical drug-drug interactions, including CYP2B6, 2C9, 2C19, 2D6, and 3A. Computerized molecular docking with the X-ray crystallographic structure of aromatase was used to describe the detailed biochemical interactions involved. The inhibitory potency order of the tested compounds was as follows: norendoxifen ≫ 4,4'-dihydroxy-tamoxifen > endoxifen > N-desmethyl-tamoxifen, N-desmethyl-4'-hydroxy-tamoxifen, tamoxifen-N-oxide, 4'-hydroxy-tamoxifen, N-desmethyl-droloxifene > 4-hydroxy-tamoxifen, tamoxifen. Norendoxifen inhibited recombinant aromatase via a competitive mechanism with a K ( i ) of 35 nM. Norendoxifen inhibited placental aromatase with an IC(50) of 90 nM, while it inhibited human liver CYP2C9 and CYP3A with IC(50) values of 990 and 908 nM, respectively. Inhibition of human liver CYP2C19 by norendoxifen appeared even weaker. No substantial inhibition of CYP2B6 and CYP2D6 by norendoxifen was observed. These data suggest that multiple metabolites of tamoxifen may contribute to its action in the treatment of breast cancer via aromatase inhibition. Most of all, norendoxifen may be able to serve as a potent and selective lead compound in the development of improved therapeutic agents. The range of structures tested in this study and their pharmacologic potencies provide a reasonable pharmacophore upon which to build novel AIs.
The mechanism of tamoxifen action in the treatment of breast cancer is believed to be via active metabolites that act as potent estrogen receptor antagonists. Attempts to identify relationships between active metabolite concentrations and clinical outcomes have produced mixed results. Since anti-estrogenic effects may be brought about not only by estrogen antagonism, but also by reduced estrogen synthesis, we tested the ability of tamoxifen and its principal metabolites to inhibit aromatase in vitro. The activity of human aromatase in both recombinant and placental microsomal preparations was measured using the rate of generation of a fluorescent metabolite in the presence and absence of multiple concentrations of tamoxifen, endoxifen, N-desmethyl-tamoxifen, and Z-4-hydroxy-tamoxifen. Aromatase inhibition was further characterized by measuring the inhibition of testosterone metabolism to estradiol. The biochemical mechanisms of inhibition were documented and their inhibitory potency was compared. Using recombinant human aromatase, endoxifen, and N-desmethyl-tamoxifen were able to inhibit aromatase activity with K (i) values of 4.0 and 15.9 μM, respectively. Detailed characterization of inhibition by endoxifen and N-desmethyl-tamoxifen indicated non-competitive kinetics for both inhibitors. Similarly, endoxifen-inhibited testosterone metabolism via a non-competitive mechanism. No appreciable inhibition by tamoxifen or Z-4-hydroxy-tamoxifen was observed at similar concentrations. The relative inhibitory potency was: endoxifen > N-desmethyl-tamoxifen >>> Z-4-hydroxy-tamoxifen > tamoxifen. Similar data were obtained in human placental microsomes. Endoxifen and N-desmethyl-tamoxifen were found to be potent inhibitors of aromatase. Inhibition by these tamoxifen metabolites may contribute to the variability in clinical effects of tamoxifen in patients with breast cancer. Relationships between tamoxifen metabolite concentrations and clinical outcomes may be complex, and the biologic mechanisms that underlie these relationships may include aromatase inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.