IL-27, a heterodimeric cytokine of the IL-12 family, has diverse influences on the development of multiple inflammatory diseases. In this study, we identified the protective role of IL-27/IL-27R in host defense against Chlamydia muridarum respiratory infection and further investigated the immunological mechanism. Our results showed that IL-27 was involved in C. muridarum infection and that IL-27R knockout mice (WSX-1–/– mice) suffered more severe disease, with greater body weight loss, higher chlamydial loads, and more severe inflammatory reactions in the lungs than C57BL/6 wild-type mice. There were excessive IL-17–producing CD4+ T cells and many more neutrophils, neutrophil-related proteins, cytokines, and chemokines in the lungs of WSX-1–/– mice than in wild-type mice following C. muridarum infection. In addition, IL-17/IL-17A–blocking Ab treatment improved disease after C. muridarum infection in WSX-1–/– mice. Overall, we conclude that IL-27/IL-27R mediates protective immunity during chlamydial respiratory infection in mice by suppressing excessive Th17 responses and reducing neutrophil inflammation.
The IL-21/IL-21R interaction plays an important role in a variety of immune diseases; however, the roles and mechanisms in intracellular bacterial infection are not fully understood. In this study, we explored the effect of IL-21/IL-21R on chlamydial respiratory tract infection using a chlamydial respiratory infection model. The results showed that the mRNA expression of IL-21 and IL-21R was increased in Chlamydia muridarum–infected mice, which suggested that IL-21 and IL-21R were involved in host defense against C. muridarum lung infection. IL-21R−/− mice exhibited less body weight loss, a lower bacterial burden, and milder pathological changes in the lungs than wild-type (WT) mice during C. muridarum lung infection. The absolute number and activity of CD4+ T cells and the strength of Th1/Th17 responses in IL-21R−/− mice were significantly higher than those in WT mice after C. muridarum lung infection, but the Th2 response was weaker. Consistently, IL-21R−/− mice showed higher mRNA expression of Th1 transcription factors (T-bet/STAT4), IL-12p40, a Th17 transcription factor (STAT3), and IL-23. The mRNA expression of Th2 transcription factors (GATA3/STAT6), IL-4, IL-10, and TGF-β in IL-21R−/− mice was significantly lower than that in WT mice. Furthermore, the administration of recombinant mouse IL-21 aggravated chlamydial lung infection in C57BL/6 mice and reduced Th1 and Th17 responses following C. muridarum lung infection. These findings demonstrate that IL-21/IL-21R may aggravate chlamydial lung infection by inhibiting Th1 and Th17 responses.
IL-21/IL-21R was documented to participate in the regulation of multiple infection and inflammation. During Chlamydia muridarum (C. muridarum) respiratory infection, our previous study had revealed that the absence of this signal induced enhanced resistance to infection with higher protective Th1/Th17 immune responses. Here, we use the murine model of C. muridarum respiratory infection and IL-21R deficient mice to further identify a novel role of IL-21/IL-21R in neutrophilic inflammation. Resistant IL-21R-/- mice showed impaired neutrophil recruitment to the site of infection. In the absence of IL-21/IL-21R, pulmonary neutrophils also exhibited reduced activation status, including lower CD64 expression, MPO activity, and neutrophil-produced protein production. These results correlated well with the decrease of neutrophil-related chemokines (KC and MIP-2), inflammatory cytokines (IL-6, IL-1β, and TNF-α), and TLR/MyD88 pathway mediators (TLR2, TLR4, and MyD88) in infected lungs of IL-21R-/- mice than normal mice. Complementarily, decreased pulmonary neutrophil infiltration, activity, and levels of neutrophilic chemotactic factors and TLR/MyD88 signal in infected lungs can be corrected by rIL-21 administration. These results revealed that IL-21/IL-21R may aggravate the neutrophil inflammation through regulating TLR/MyD88 signal pathway during chlamydial respiratory infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.