In recent years, cyber attacks have shown diversified, purposeful, and organized characteristics, which pose significant challenges to cyber defense decision-making on internal networks. Due to the continuous confrontation between attackers and defenders, only using data-based statistical or supervised learning methods cannot cope with increasingly severe security threats. It is urgent to rethink network defense from the perspective of decision-making, and prepare for every possible situation. Reinforcement learning has made great breakthroughs in addressing complicated decision-making problems. We propose a framework that defines four modules based on the life cycle of threats: pentest, design, response, recovery. Our aims are to clarify the problem boundary of network defense decision-making problems, to study the problem characteristics in different contexts, to compare the strengths and weaknesses of existing research, and to identify promising challenges for future work. Our work provides a systematic view for understanding and solving decision-making problems in the application of reinforcement learning to cyber defense.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.