The recent success of graph neural networks has significantly boosted molecular property prediction, advancing activities such as drug discovery. The existing deep neural network methods usually require large training dataset for each property, impairing their performance in cases (especially for new molecular properties) with a limited amount of experimental data, which are common in real situations. To this end, we propose Meta-MGNN, a novel model for few-shot molecular property prediction. Meta-MGNN applies molecular graph neural network to learn molecular representations and builds a meta-learning framework for model optimization.To exploit unlabeled molecular information and address task heterogeneity of different molecular properties, Meta-MGNN further incorporates molecular structures, attribute based self-supervised modules and self-attentive task weights into the former framework, strengthening the whole learning model. Extensive experiments on two public multi-property datasets demonstrate that Meta-MGNN outperforms a variety of state-of-the-art methods.
The goal of text-to-text generation is to make machines express like a human in many applications such as conversation, summarization, and translation. It is one of the most important yet challenging tasks in natural language processing (NLP). Various neural encoder-decoder models have been proposed to achieve the goal by learning to map input text to output text. However, the input text alone often provides limited knowledge to generate the desired output, so the performance of text generation is still far from satisfaction in many real-world scenarios. To address this issue, researchers have considered incorporating (i) internal knowledge embedded in the input text and (ii) external knowledge from outside sources such as knowledge base and knowledge graph into the text generation system. This research topic is known as knowledge-enhanced text generation . In this survey, we present a comprehensive review of the research on this topic over the past five years. The main content includes two parts: (i) general methods and architectures for integrating knowledge into text generation; (ii) specific techniques and applications according to different forms of knowledge data. This survey can have broad audiences, researchers and practitioners, in academia and industry.
Pre-trained language models (PLMs) aim to learn universal language representations by conducting self-supervised training tasks on largescale corpus. Since PLMs capture word semantics in different contexts, the quality of word representations highly depends on word frequency, which usually follows a heavy-tailed distribution in the pre-training corpus. Thus, the embeddings of rare words on the tail are usually poorly optimized. In this work, we focus on enhancing language model pre-training by leveraging definitions of the rare words in dictionary. To incorporate a rare word definition as a part of input, we fetch it from the dictionary and append it to the end of the input text sequence. In addition to training with the masked language modeling objective, we propose two novel self-supervised pre-training tasks on word-level and sentence-level alignment between the input text and rare word definition to enhance language representations. We evaluate the proposed model named Dict-BERT on the GLUE benchmark and eight specialized domain datasets. Extensive experiments show that Dict-BERT significantly improves the understanding of rare words and boosts model performance on various NLP downstream tasks.
With the recent advancement of deep learning, molecular representation learning-automating the discovery of feature representation of molecular structure, has attracted significant attention from both chemists and machine learning researchers. Deep learning can facilitate a variety of downstream applications, including bio-property prediction, chemical reaction prediction, etc. Despite the fact that current SMILES string or molecular graph molecular representation learning algorithms (via sequence modeling and graph neural networks, respectively) have achieved promising results, there is no work to integrate the capabilities of both approaches in preserving molecular characteristics (e.g, atomic cluster, chemical bond) for further improvement. In this paper, we propose GraSeq, a joint graph and sequence representation learning model for molecular property prediction. Specifically, GraSeq makes a complementary combination of graph neural networks and recurrent neural networks for modeling two types of molecular inputs, respectively. In addition, it is trained by the multitask loss of unsupervised reconstruction and various downstream tasks, using limited size of labeled datasets. In a variety of chemical property prediction tests, we demonstrate that our GraSeq model achieves better performance than state-of-the-art approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.