In recent years, there has been increased interest in the use of bus IC card data to analyze bus transit time characteristics, and the prediction is no longer confined to rail traffic passenger flow prediction and traditional traffic flow prediction. Research on passenger flow forecast for the bus IC card has been increasing year by year. Based on the bus IC card data of Qingdao City, this paper first analyzes the characteristics of one-day passenger flow and passenger flow during subperiods and conducts a separate study on the characteristics of the elderly. e results show that the travel of the elderly is also affected by the weekday and the weekend. en, based on the ARIMA model and the NARX neural network model, the passenger flow forecasting (10-minute interval) is carried out using the IC card data of No. 1 bus for 5 weekdays. e prediction results show that the NARX neural network model is effective in the short-term prediction of bus passenger flow, and especially, it is more accurate in the peak hour and large-scale data prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.