SUMMARYThe embryonic pyruvate kinase M2 (PKM2) isoform is highly expressed in human cancer. In contrast to the established role of PKM2 in aerobic glycolysis or the Warburg effect 1,2,3 , its nonmetabolic functions remain elusive. Here we demonstrate that EGFR activation induces translocation of PKM2, but not PKM1, into the nucleus, where K433 of PKM2 binds to c-Srcphosphorylated Y333 of β-catenin. This interaction is required for both proteins to be recruited to the CCND1 promoter, leading to HDAC3 removal from the promoter, histone H3 acetylation, and cyclin D1 expression. PKM2-dependent β-catenin transactivation is instrumental in EGFRpromoted tumor cell proliferation and brain tumor development. In addition, positive correlations have been identified among c-Src activity, β-catenin Y333 phosphorylation, and PKM2 nuclear accumulation in human glioblastoma specimens. Furthermore, levels of β-catenin phosphorylation and nuclear PKM2 have been correlated with grades of glioma malignancy and prognosis. These findings reveal that EGF induces β-catenin transactivation via a mechanism distinct from that induced by Wnt/wingless 4 and highlight the essential nonmetabolic functions of PKM2 in EGFRpromoted β-catenin transactivation, cell proliferation, and tumorigenesis.Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms Correspondence: zhiminlu@mdanderson.org. Contributions This study was conceived by Z.L. Z.L and W.Y. designed the study; W.Y., Y.X., H.J., Y.Z., and J.L. performed experiments; K.A. provided pathology assistance; W.H. and X.G. provided reagents and conceptual advice; Z.L. wrote the paper with comments from all authors. Since both EGFR activation and PKM2 expression are instrumental in tumorigenesis 5,6,7 , we examined whether EGFR activation regulates PKM2 functions in a subcellular compartment-dependent manner. Immunofluorescence analysis showed that EGF treatment resulted in the nuclear accumulation of PKM2 in U87/EGFR human glioblastoma (GBM) cells (Fig. 1a). In addition, expression of the constitutively active EGFRvIII mutant in U87 cells had a higher amount of nuclear PKM2 than did EGF-untreated U87/EGFR cells ( Supplementary Fig. 2a). The finding that EGF induces nuclear translocation of PKM2 was further supported by cell fractionation analysis of DU145 prostate cancer cells, MDA-MB-231 breast cancer cells, and U87/EGFR cells ( Supplementary Fig. 2b). In addition, PKM1 failed to translocate into the nucleus upon EGF stimulation ( Supplementary Fig. 2c), indicating that EGF specifically regulates the subcellular distribution of PKM2 in multiple types of cancer cells. HHS Public AccessTo examine whether PKM2 directly regulates gene transcription and cell proliferation, we expressed PKM2 shRNA in U87/EGFR cells ( Supplementary Fig. 3a). PKM2 depletion largely reduced both basal and EGF-induced tumor cell prolife...
BackgroundDistal radius fracture is common in the general population. Fracture management includes a plaster cast, splint and synthetic material cast to immobilise the injured arm. Casting complications are common in those conventional casting technologies. 3D printing technology is a rapidly increasing application in rehabilitation. However, there is no clinical study investigating the application of a 3D–printed orthopaedic cast for the treatment of bone fractures. We have developed a patient-specific casting technology fabricated by 3D printing. This pioneering study aims to use 3D–printed casts we developed for the treatment of distal radius fractures, to provide the foundation for conducting additional clinical trials, and to perform clinical assessments.MethodTen patients with ages between 5 and 78 years are involved in the clinical trial. Patients are applied 3D–printed casts we developed. Orthopaedic surgeons carried out a six-week follow-up to examine clinical outcomes. Two questionnaires were developed for the assessment of clinical efficacy and patients’ satisfaction. These questionnaires are completed by physicians and participating patients.ResultsA 3D–printed cast creates a custom-fitted design to maintain the fractured bone alignment. No loss of reduction is found in all patients. Compartment syndrome and pressure sores are not present. Patient comfort gets positive scores on the questionnaire. All (100%) of the patients opt for the 3D–printed cast instead of the conventional plaster cast.DiscussionA patient-specific, 3D–printed cast offers a proper fit to immobilise an injured arm and holds the fracture reduction appropriately. A custom-fitted structure reduces the risk of pressure-related complications due to the high and concentrated local stress. The ventilated and lightweight design minimises interference with a patient’s daily activities and reduces the risk of cutaneous complications. Patients express a strong preference for using a 3D–printed cast instead of a plaster cast. Limitations of the novel cast include a slight odour after heavy sweating and the relatively high cost due to the limitations of current 3D printing technologies.ConclusionsThis pioneering study is the first clinical trial on the application of a 3D–printed cast for the treatment of forearm fractures. The novel casting technology heals the fracture effectively without casting complications. The 3D–printed cast is patient-specific and ventilated as well as lightweight, and it features both increased patient comfort and satisfaction.
The miR-19 family (miR-19a and miR-19b-1) are key oncogenic components of the miR-17-92 cluster. Overexpression of miR-19 is strongly associated with cancer invasion and metastasis, and poor prognosis of cancer patients. However, the underlying mechanisms remain largely unknown. In the present study, we found that enforced expression of miR-19 including miR-19a and miR-19b-1 triggered epithelial-mesenchymal transition (EMT) of lung cancer cells A549 and HCC827 as shown by mesenchymal-like morphological conversion, downregulation of epithelial proteins (e.g., E-cadherin, ZO-1 (zona occludens 1), and α-catenin), upregulation of mesenchymal proteins (e.g., vimentin, fibronectin 1, N-cadherin, and snail1), formation of stress fibers, and reduced cell adhesion. In addition, enhanced migration and invasion were observed in the cancer cells A549 and HCC827 undergoing EMT. In contrast, silencing of endogenous miR-19 reversed EMT and reduced the migration and invasion abilities of A549 and HCC827 cells. DNA microarray results revealed significant changes of the expression of genes related to EMT, migration, and metastasis of miR-19-expressing A549 cells. Moreover, siRNA-mediated knockdown of PTEN, a target of miR-19, also resulted in EMT, migration, and invasion of A549 and HCC827 cells, suggesting that PTEN is involved in miR-19-induced EMT, migration and invasion of lung cancer cells. Furthermore, lung cancer cells undergoing EMT induced by miR-19 demonstrated reduced proliferation in vitro and in vivo, and enhanced resistance to apoptosis caused by TNF-α. Taken together, these findings suggest that miR-19 triggers EMT, which has an important role in the invasion and migration of lung cancer cells, accompanied by the reduced proliferation of cells.
Chromatin-associated fumarase (FH) affects histone methylation via its metabolic activity. However, whether this effect is involved in gene transcription remains to be clarified. In this study, we show that under glucose deprivation conditions, AMPK phosphorylates FH at Ser75, which in turn forms a complex with ATF2 and participates in promoter activation. FH-catalysed fumarate in promoter regions inhibits KDM2A demethylase activity, and thus maintains the H3K36me2 profile and facilitates gene expression for cell growth arrest. On the other hand, FH is found to be O-GlcNAcylated at the AMPK phosphorylation site; FH-ATF2-mediated downstream events are impeded by FH O-GlcNAcylation, especially in cancer cells that display robust O-GlcNAc transferase (OGT) activity. Consistently, the FH-Ser75 phosphorylation level inversely correlates with the OGT level and poor prognosis in pancreatic cancer patients. These findings uncover a previously uncharacterized mechanism underlying transcription regulation by FH and the linkage between dysregulated OGT activity and growth advantage of cancer cells under glucose deficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.