The ultrafine grained duplex steels were fabricated by austenite reverted transformation annealing of the medium manganese steels after quenching or cold rolling. The microstructures were examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and X‐ray diffraction (XRD). The mechanical properties were determined by uniaxial tensile test. It was demonstrated that both the quenched and cold rolled structures were transformed into ultrafine grained duplex structures with large fractioned austenite by ART‐annealing. Long time annealing is essential to obtain the large fractioned austenite in quenched steel, but only short time annealing is needed to get large fractioned austenite in the cold rolled sheet. The mechanical examinations indicated that ART‐annealing results in the superhigh tensile elongation (>40%) and superhigh strength (1000 MPa) in quenched steels after long time annealing but in cold rolled steels after short time annealing. Based on the analysis on the work hardening behaviors of these ART‐annealed steels, the abnormal work hardening rate was presented and analyzed. The substantially enhanced ductility was attributed to the Lüders band propagation of the ferrite matrix and/or the TRIP effects of the large fractioned austenite. At last the dynamic phase natures of both fraction and stress was proposed to interpret the abnormal hardening behaviors and the “S” shaped stress–strain curves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.