Background The critical role of phosphoinositide 3-kinase (PI3K) activation in tumor cell biology has prompted massive efforts to develop PI3K inhibitors (PI3Kis) for cancer therapy. However, recent results from clinical trials have shown only a modest therapeutic efficacy of single-agent PI3Kis in solid tumors. Targeting autophagy has controversial context-dependent effects in cancer treatment. As a FDA-approved lysosomotropic agent, hydroxychloroquine (HCQ) has been well tested as an autophagy inhibitor in preclinical models. Here, we elucidated the novel mechanism of HCQ alone or in combination with PI3Ki BKM120 in the treatment of cancer. Methods The antitumor effects of HCQ and BKM120 on three different types of tumor cells were assessed by in vitro PrestoBlue assay, colony formation assay and in vivo zebrafish and nude mouse xenograft models. The involved molecular mechanisms were investigated by MDC staining, LC3 puncta formation assay, immunofluorescent assay, flow cytometric analysis of apoptosis and ROS, qRT-PCR, Western blot, comet assay, homologous recombination (HR) assay and immunohistochemical staining. Results HCQ significantly sensitized cancer cells to BKM120 in vitro and in vivo. Interestingly, the sensitization mediated by HCQ could not be phenocopied by treatment with other autophagy inhibitors (Spautin-1, 3-MA and bafilomycin A1) or knockdown of the essential autophagy genes Atg5/Atg7, suggesting that the sensitizing effect might be mediated independent of autophagy status. Mechanistically, HCQ induced ROS production and activated the transcription factor NRF2. In contrast, BKM120 prevented the elimination of ROS by inactivation of NRF2, leading to accumulation of DNA damage. In addition, HCQ activated ATM to enhance HR repair, a high-fidelity repair for DNA double-strand breaks (DSBs) in cells, while BKM120 inhibited HR repair by blocking the phosphorylation of ATM and the expression of BRCA1/2 and Rad51. Conclusions Our study revealed that HCQ and BKM120 synergistically increased DSBs in tumor cells and therefore augmented apoptosis, resulting in enhanced antitumor efficacy. Our findings provide a new insight into how HCQ exhibits antitumor efficacy and synergizes with PI3Ki BKM120, and warn that one should consider the “off target” effects of HCQ when used as autophagy inhibitor in the clinical treatment of cancer.
Background: Ovarian cancer is a disease with the highest mortality in gynecologic malignancies. Activation of STAT3 pathway is well known to be associated with tumor progression and metastasis in a number of cancers including ovarian cancer. Therefore, STAT3 may be an ideal target for ovarian cancer treatment. Objective: The present study aims to determine the antitumor activity of STAT3 inhibitor Napabucasin as a single agent or in combination with proteasome inhibitor MG-132 in ovarian cancer cells. Methods: MTT was performed to determine the anti-proliferative effect of Napabucasin on ovarian cancer SKOV-3 cells. The involved anti-tumor mechanism was explored by flow cytometry, qRT-PCR and western blot. MDC staining and tandem mRFP-GFP-LC3 fluorescence microscopy were used to analyze the autophagy inducing capability of Napabucasin with or without MG-132. The combinational anticancer effect of Napabucasin and MG-132 was evaluated according to Chou and Talalay’s method (1984). Results: Napabucasin showed obvious tumor-inhibitory effects against SKOV-3 cells. Treatment by Napabucasin arrested cell cycle progression in G2/M phase. Mechanistically, elevated expression of p21 may contribute to the blockade of cell cycle. Moreover, we demonstrated that Napabucasin induced autophagy in SKOV-3 cells by using various assays including MDC staining, autophagic flux examination, and detection of the autophagy markers. In addition, combination of Napabucaisin with MG-132 exhibited significant synergistic anti-proliferative effect, probably by inducing apoptosis through a mitochondria-dependent pathway. The two compounds induced pro-survival autophagies, and co-treated with autophagy inhibiter might further enhance their antitumor effects. Conclusion: Napabucasin alone or in combination with MG-132 might be promising treatment strategies for ovarian cancer patients.
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults. Temozolomide (TMZ) is used as the standard chemotherapeutic agent for GBM but with limited success, and treatment failure is mainly due to tumor resistance. One of the leading causes of TMZ resistance is the upregulation of the DNA repair mechanism. Therefore, targeting the DNA damage response (DDR) is proposed to be an effective strategy to sensitize tumor cells to TMZ. In the present study, we demonstrated that the combined use of the PI3K inhibitor ZSTK474 and TMZ showed synergetic anticancer effects on human GBM cells in vitro and in vivo. The combination treatment led to significantly increased cell apoptosis and DNA double strand breaks (DSBs). In addition, a mechanistic study indicated that TMZ enhanced the homologous recombination (HR) repair efficiency in GBM cells, while ZSTK474 impaired HR repair by blocking the phosphorylation of ATM and the expression of BRCA1/2 and Rad51, thereby sensitizing GBM cells to TMZ. Moreover, TMZ activated the PI3K signaling pathway through upregulation of the PI3K catalytic subunits p110α and p110β and the phosphorylation of Akt. Meanwhile, ZSTK474 blocked the activity of the PI3K/Akt pathway. Taken together, our findings suggested that the combination of ZSTK474 and TMZ might be a potential therapeutic option for GBM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.