SUMMARY Brown adipose tissue (BAT) can disperse stored energy as heat. Promoting BAT-like features in white adipose (WAT) is an attractive, if elusive therapeutic approach to staunch the current obesity epidemic. Here we report that gain-of-function of the NAD-dependent deacetylase SirT1 or loss-of-function of its endogenous inhibitor Deleted in breast cancer-1 (Dbc1) promote “browning” of WAT by deacetylating peroxisome proliferator-activated receptor (Ppar)-γ on Lys268 and Lys293. SirT1-dependent deacetylation of Lys268 and Lys293 is required to recruit the BAT program coactivator Prdm16 to Pparγ, leading to selective induction of BAT genes and repression of visceral WAT genes associated with insulin resistance. An acetylation-defective Pparγ mutant induces a brown phenotype in white adipocytes, while an acetylated mimetic fails to induce “brown” genes, but retains the ability to activate “white” genes. We propose that SirT1-dependent Pparγ deacetylation is a form of selective Pparγ modulation of potential therapeutic import.
SIRT1 is an NAD-dependent deacetylase critically involved in stress responses, cellular metabolism and, possibly, ageing [1][2][3][4][5][6][7][8][9][10][11][12][13][14][15] . The tumour suppressor p53 represents the first non-histone substrate functionally regulated by acetylation and deacetylation 16,17 ; we and others previously found that SIRT1 promotes cell survival by deacetylating p53 (refs 4-6 ). These results were further supported by the fact that p53 hyperacetylation and increased radiation-induced apoptosis were observed in Sirt1-deficient mice 10 . Nevertheless, SIRT1-mediated deacetylase function is also implicated in p53-independent pathways under different cellular contexts, and its effects on transcriptional factors such as members of the FOXO family and PGC-1α directly modulate metabolic responses [1][2][3][4][5][6][7][8][9][10][11][12][13][14][15] . These studies validate the importance of the deacetylase activity of SIRT1, but how SIRT1 activity is regulated in vivo is not well understood. Here we show that DBC1 (deleted in breast cancer 1) acts as a native inhibitor of SIRT1 in human cells. DBC1-mediated repression of SIRT1 leads to increasing levels of p53 acetylation and upregulation of p53-mediated function. In contrast, depletion of endogenous DBC1 by RNA interference (RNAi) stimulates SIRT1-mediated deacetylation of p53 and inhibits p53-dependent apoptosis. Notably, these effects can be reversed in cells by concomitant knockdown of endogenous SIRT1. Our study demonstrates that DBC1 promotes p53-mediated apoptosis through specific inhibition of SIRT1.To understand the regulation of SIRT1-mediated deacetylation in vivo, biochemical purification was used to identify cellular factors that stably interact with SIRT1. We isolated physiologically formed protein complexes containing SIRT1 from cell extracts of native HeLa cells by conducting affinity chromatography with affinity-purified antisera raised against the carboxy (C) terminus (amino acids 480-737) of SIRT1 ( Supplementary Fig. 1a). As expected, we identified SIRT1 as the major component of the complexes, but several protein bands were also co-purified with SIRT1. Mass spectrometry of a prominent protein band of approximately 130 kilodaltons (kDa) from the SIRT1 complexes revealed peptide sequences corresponding to the DBC1 protein ( Supplementary Fig. 1b, Gi: 24432106). The DBC1 gene was initially identified as it is localized to a region of chromosome 8p21 that was homozygously deleted in human breast cancer; however, the molecular function of DBC1 is poorly understood 18,19 .To examine the interaction between endogenous DBC1 and SIRT1, cell extracts from human osteosarcoma U2OS cells were immunoprecipitated with the anti-SIRT1 antibody or with the
Marrow-resident mesenchymal stem cells (MSCs) serve as a functional component of the perivascular niche that regulates hematopoiesis. They also represent the main source of bone formed in adult bone marrow, and their bifurcation to osteoblast and adipocyte lineages plays a key role in skeletal homeostasis and aging. Although the tumor suppressor p53 also functions in bone organogenesis, homeostasis, and neoplasia, its role in MSCs remains poorly described. Herein, we examined the normal physiological role of p53 in primary MSCs cultured under physiologic oxygen levels. Using knockout mice and gene silencing we show that p53 inactivation downregulates expression of TWIST2, which normally restrains cellular differentiation to maintain wild-type MSCs in a multipotent state, depletes mitochondrial reactive oxygen species (ROS) levels, and suppresses ROS generation and PPARG gene and protein induction in response to adipogenic stimuli. Mechanistically, this loss of adipogenic potential skews MSCs toward an osteogenic fate, which is further potentiated by TWIST2 downregulation, resulting in highly augmented osteogenic differentiation. We also show that p53 −/− MSCs are defective in supporting hematopoiesis as measured in standard colony assays because of decreased secretion of various cytokines including CXCL12 and CSF1. Lastly, we show that transient exposure of wild-type MSCs to 21% oxygen upregulates p53 protein expression, resulting in increased mitochondrial ROS production and enhanced adipogenic differentiation at the expense of osteogenesis, and that treatment of cells with FGF2 mitigates these effects by inducing TWIST2. Together, these findings indicate that basal p53 levels are necessary to maintain MSC bi-potency, and oxygen-induced increases in p53 expression modulate cell fate and survival decisions. Because of the critical function of basal p53 in MSCs, our findings question the use of p53 null cell lines as MSC surrogates, and also implicate dysfunctional MSC responses in the pathophysiology of p53-related skeletal disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.