The melanoma is responsible for the majority of all skin cancer–related deaths worldwide. Evidence suggests that local anesthetics provide some benefit in the treatment of cancer via inhibition of cellular proliferation, invasion and migration. However, the potential antiproliferative effects of local anesthetics in the treatment of melanoma remain to be elucidated. In this study, we investigated the antiproliferative effects and underlying mechanism of the commonly used local anesthetic (lidocaine) on melanoma cells. A375 melanoma cells were treated by lidocaine or vemurafenib. Cell Counting Kit‐8, histological staining, flow cytometric analysis, immunohistochemical staining, and Western blot analyses were carried out to test the effects of lidocaine and vemurafenib on A375 cells. BALB/C‐nu/nu mice intraperitoneally injected with A375 cells were treated by lidocaine, and then tumor volume and weight were calculated. Lidocaine exhibited vemurafenib‐like effects totally. Lidocaine inhibited A375 melanoma cell proliferation in a dose‐ and time‐dependent manner and colony formation also showed a dose‐dependent inhibition. Lidocaine treatment resulted in the arrest of cell‐cycle progression in the G1 phase and inhibited Ki‐67 expression in a dose‐dependent manner. This effect was associated with inhibited extracellular signal–regulated kinase (ERK) phosphorylation. In vivo experiments revealed that intravenous injections of lidocaine suppressed tumor volume and weight. Lidocaine inhibits melanoma cell proliferation in a dose‐ and time‐dependent manner via a mechanism that may involve inhibition of the ERK signaling pathway. Thus, lidocaine may provide some benefit for the treatment of melanoma.
Hepatocellular carcinoma (HCC) is a common primary liver malignancy lacking effective molecularly-targeted therapies. HBO1 (lysine acetyltransferase 7/KAT7) is a member of MYST histone acetyltransferase family. Its expression and potential function in HCC are studied. We show that HBO1 mRNA and protein expression is elevated in human HCC tissues and HCC cells. HBO1 expression is however low in cancer-surrounding normal liver tissues and hepatocytes. In HepG2 and primary human HCC cells, shRNA-induced HBO1 silencing or CRISPR/Cas9-induced HBO1 knockout potently inhibited cell viability, proliferation, migration, and invasion, while provoking mitochondrial depolarization and apoptosis induction. Conversely, ectopic overexpression of HBO1 by a lentiviral construct augmented HCC cell proliferation, migration and invasion. In vivo, xenografts-bearing HBO1-KO HCC cells grew significantly slower than xenografts with control HCC cells in severe combined immunodeficient mice. These results suggest HBO1 overexpression is important for HCC cell progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.