Hall thruster has the advantages of simple structure, high specific impulse, high efficiency, and long service life, and so on. It is suitable for spacecraft attitude control, North and South position keeping, and other track tasks. The anode layer Hall thruster is a kind of Hall thruster. The thruster has a longer anode area and a relatively short discharge channel. In this paper, the effect of the channel length on the performance of the anode layer Hall thruster is simulated by the PIC simulation method. The simulation results show that the change of the channel length has significant effect on the plasma parameters, such as potential and plasma density and so on. The ionization region mainly concentrates at the hollow anode outlet position, and can gradually move toward the channel outlet as the channel length decreases. The collision between the ions and the wall increases with the channel length increasing. So the proper shortening of the channel length can increase the life of the thruster. Besides, the results show that there is a best choice of the channel length for obtaining the best performance. In this paper, thruster has the best performance under a channel length of 5 mm.
The antibiotic resistance of Edwardsiella tarda is becoming increasingly prevalent, and thus novel antimicrobial strategies are being sought. Lysine acylation has been demonstrated to play an important role in bacterial physiological functions, while its role in bacterial antibiotic resistance remains largely unclear. In this study, we investigated the lysine acetylation and succinylation profiles of E. tarda strain EIB202 using affinity antibody purification combined with LC-MS/MS. A total of 1511 lysine-acetylation sites were identified on 589 proteins, and 2346 lysine-succinylation sites were further identified on 692 proteins of this pathogen. Further bioinformatic analysis showed that both post-translational modifications (PTMs) were enriched in the tricarboxylic acid (TCA) cycle, pyruvate metabolism, biosynthesis, and carbon metabolism. In addition, 948 peptides of 437 proteins had overlapping associations with multiple metabolic pathways. Moreover, both acetylation and succinylation were found in many antimicrobial resistance (AMR) proteins, suggesting their potentially vital roles in antibiotic resistance. In general, our work provides insights into the acetylome and succinylome features responsible for the antibiotic resistance mechanism of E. tarda, and the results may facilitate future investigations into the pathogenesis of this bacterium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.