BackgroundA long-term existing schistosome infection can aid in maintaining immuno-homeostasis, thus providing protection against various types of autoimmune diseases to the infected host. Such benefits have often been associated with acute or egg stage infection and with the egg-induced Th2 response. However, since schistosome infection undergoes different stages, each associated with a specific induction of Th responses, the requirements for the ability of the different stages of schistosome infection to protect against autoimmune disease has not been elucidated. The present study was designed to study whether different stages of schistosome infection offer unique protection in collagen-induced arthritis and its mechanisms.ResultsArthritis susceptible strain DBA/1 male mice were infected with Schistosoma japonicum for either 2 weeks resulting in early stage infection or for 7 weeks resulting in acute or egg stage infection. Following Schistosoma japonicum infection, collagen II was administered to induce collagen-induced arthritis, an animal model for human rheumatoid arthritis. Infection by Schistosoma japonicum significantly reduced the severity and the incidence of experimental autoimmune collagen-induced arthritis. However, this beneficial effect can only be provided by a pre-established acute stage of infection but not by a pre-established early stage of the infection. The protection against collagen-induced arthritis correlated with reduced levels of anti-collagen II IgG, especially the subclass of IgG2a. Moreover, in protected mice increased levels of IL-4 were present at the time of collagen II injection together with sustained higher IL-4 levels during the course of arthritis development. In contrast, in unprotected mice minimal levels of IL-4 were present at the initial stage of collagen II challenge together with lack of IL-4 induction following Schistosoma japonicum infection.ConclusionThe protective effect against collagen-induced arthritis provided by Schistosoma japonicum infection is infection stage-dependent. Furthermore, the ability of schistosomiasis to negatively regulate the onset of collagen-induced arthritis is associated with a dominant as well as long-lasting Th2 response at the initiation and development of autoimmune joint and systemic inflammation.
BackgroundSchistosomiasis is a chronic infection, where the host immune response to the parasite changes from a predominantly Th1 to Th2 phenotype, when parasite enters the egg stage, restraining the host inflammatory immune responses to achieve a longer survival in the host. On the other hand, the development of Th2 responses causes immunopathological changes such as liver fibrosis. Therefore identification of schistosome-derived Th2 inducing molecules is important in the understanding of pathogenesis of schistosomiasis. A cyclophilin A homologue of Schistosoma japonicum was reported to be an egg-stage specific antigen, but its immunogenicity and immunoregulatory activities remain unknown.MethodsWe cloned and expressed the gene of cyclophilin A from Schistosoma japonicum (AY814078), named as SjCyP18 based on its molecular weight. The expression profiles in different stages of S. japonicum were examined by RT-PCR and immunofluorescence assay. The immunogenicity of SjCyP18 was measured by the presence of IgG in the sera from S. japonicum infected patients and animals, and the Th2-promting activities were examined by the subclass of immunoglobulins against SjCyP18 and by the IL-4 induction in T cells following footpad injection of SjCyP18.ResultsThe cloned SjCyP18 has 65% homology with human or mouse cyclophilin A at the amino acid level. In contrast to reports as an egg-stage specific antigen, the gene was found to be expressed in all stages of S. japonicum. IgG responses against SjCyP18 were found in some S. japonicum infected patients and were significantly induced when infection become patent and produce eggs in infected mice. Furthermore, the Th2-promoting subclass of IgG1 was the predominant isotype in S. japonicum infected mice. More importantly, footpad injection of SjCyP18 induced a greater production of IL-4 than that of IFN-γ by lymphocytes compared to responses from PBS injection controls.ConclusionThe cyclophilin A homologue found in S. japonicum is immunogenic and promotes Th2 responses in vivo which may contribute to the establishment of chronic infection by schistosomes.
Hemozoin (Hz) formation is a byproduct of hemoglobin digestion in some hematophagous organisms. Although Hz produced by Plasmodium falciparum (PfHz) has been shown to affect development and activities of human dendritic cells (DCs), the effects of Schistosoma Hz on DCs have not been elucidated. Our data presented in this report demonstrated that native Schistosoma japonica Hz (SjHz) did not affect the differentiation of murine bone marrow cells into immature DCs (imDCs). Maturation and stimulatory activities to T cells by imDCs induced by LPS were not altered in the presence of SjHz; whereas purified PfHz induced a slight increase in CD40 expression and enhanced IL-12p40 secretion. Lastly, SjHz treatment did not significantly affect the phagocytic activities of DCs. These data suggested that SjHz failed to exert any significant effects on the development and activities of murine myeloid DCs. The mechanisms of different effects on DCs by SjHz and PfHz remain to be elucidated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.