Mouse mutants have allowed us to gain significant insight into axis development. However, much remains to be learned about the cellular and molecular basis of early forebrain patterning. We describe a lethal mutation mouse strain generated using promoter-trap mutagenesis. The mutants exhibit severe forebrain truncation in homozygous mouse embryos and various craniofacial defects in heterozygotes. We show that the defects are caused by disruption of the gene encoding cellular nucleic acid binding protein (CNBP);Cnbp transgenic mice were able to rescue fully the mutant phenotype.Cnbp is first expressed in the anterior visceral endoderm (AVE) and,subsequently, in the anterior definitive endoderm (ADE), anterior neuroectoderm (ANE), anterior mesendoderm (AME), headfolds and forebrain. InCnbp-/- embryos, the visceral endoderm remains in the distal tip of the conceptus and the ADE fails to form, whereas the node and notochord form normally. A substantial reduction in cell proliferation was observed in the anterior regions of Cnbp-/- embryos at gastrulation and neural-fold stages. In these regions, Myc expression was absent, indicating CNBP targets Myc in rostral head formation. Our findings demonstrate that Cnbp is essential for the forebrain induction and specification.
BackgroundMolecules Interacting with CasL (MICAL1), a multidomain flavoprotein monoxygenase, is strongly involved in the mechanisms that promote cancer cell proliferation and survival. Activation of MICAL1 causes an up-regulation of reactive oxygen species (ROS) in HeLa cells. ROS can function as a signaling molecule that modulates protein phosphorylation, leading to malignant phenotypes of cancer cells such as invasion and metastasis. Herein, we tested whether MICAL1 could control cell migration and invasion through regulating ROS in breast cancer cell lines.MethodsThe effects of depletion/overexperssion of MICAL1 on cell invasion rate were measured by matrigel-based transwell assays. The contents of ROS in breast cancer cells were evaluated by CM2-DCFHDA staining and enhanced lucigenin chemiluminescence method. RAB35 activity was assessed by pulldown assay. The relationship of RAB35 and MICAL1 was evaluated by immunofluorescence, coimmunoprecipitation, immunoblotting and co-transfection techniques. Immunoblotting assays were also used to analyze Akt phosphorylation level.ResultsIn this study, we found that depletion of MICAL1 reduced cell migration and invasion as well as ROS generation. Phosphorylation of Akt was also attenuated by MICAL1 depletion. Likewise, the over-expression of MICAL1 augmented the generation of ROS, increased Akt phosphorylation, and favored invasive phenotype of breast cancer cells. Moreover, we investigated the effect of EGF signaling on MICAL1 function. We demonstrated that EGF increased RAB35 activation and activated form of RAB35 could bind to MICAL1. Silencing of RAB35 repressed ROS generation, prevented Akt phosphorylation and inhibited cell invasion in response to EGF.ConclusionsTaken together, our results provide evidence that MICAL1 plays an essential role in the activation of ROS/Akt signaling and cell invasive phenotype and identify a novel link between RAB35 and MICAL1 in regulating breast cancer cell invasion. These findings may provide a basis for designing future therapeutic strategy for blocking breast cancer metastasis.
BackgroundCD24, a mucin-like membrane glycoprotein, plays a critical role in carcinogenesis, but its role in human gastric cancer and the underlying mechanism remains undefined.MethodsThe contents of CD24 and epidermal growth factor receptor (EGFR) in gastric cancer cells (SGC-7901 and BGC-823) and non-malignant gastric epithelial cells (GES-1) were evaluated by Western blotting assay. Cellular EGFR staining was examined by immunofluorescence assay. Cell migration rate was measured by wound healing assay. The effects of depletion/overexperssion of CD24 on EGFR expression and activation of EGF/EGFR singaling pathways were evaluated by immunofluorescence, qPCR, Western blotting and flow cytometry techniques. RhoA activity was assessed by pulldown assay. CD24 and EGFR expression patterns in human gastric tumor samples were also investigated by immunohistochemistry staining.ResultsCD24 was overexpressed in human gastric cancer cells. Ectopic expression of CD24 in gastric epithelial cells augmented the expression of EGFR, while knockdown of CD24 in gastric cancer cells decreased the level of EGFR and cell migration velocity. To further explore the mechanisms, we investigated the effect of CD24 expression on EGF/EGFR signaling. We noticed that this effect of CD24 on EGFR expression was dependent on promoting EGFR internalization and degradation. Lower ERK and Akt phosphorylations in response to EGF stimulation were observed in CD24-depleted cells. In addition, we noticed that the effect of CD24 on EGFR stability was mediated by RhoA activity in SGC-7901 gastric cancer cells. Analysis of gastric cancer specimens revealed a positive correlation between CD24 and EGFR levels and an association between CD24 expression and worse prognosis.ConclusionThus, these findings suggest for the first time that CD24 regulates EGFR signaling by inhibiting EGFR internalization and degradation in a RhoA-dependent manner in gastric cancer cells.Electronic supplementary materialThe online version of this article (doi:10.1186/s12967-016-0787-y) contains supplementary material, which is available to authorized users.
Complete genomic sequences of several oral pathogens have been deciphered and multiple sources of independently annotated data are available for the same genomes. Different gene identification schemes and functional annotation methods used in these databases present a challenge for cross-referencing and the efficient use of the data. The Bioinformatics Resource for Oral Pathogens (BROP) aims to integrate bioinformatics data from multiple sources for easy comparison, analysis and data-mining through specially designed software interfaces. Currently, databases and tools provided by BROP include: (i) a graphical genome viewer (Genome Viewer) that allows side-by-side visual comparison of independently annotated datasets for the same genome; (ii) a pipeline of automatic data-mining algorithms to keep the genome annotation always up-to-date; (iii) comparative genomic tools such as Genome-wide ORF Alignment (GOAL); and (iv) the Oral Pathogen Microarray Database. BROP can also handle unfinished genomic sequences and provides secure yet flexible control over data access. The concept of providing an integrated source of genomic data, as well as the data-mining model used in BROP can be applied to other organisms. BROP can be publicly accessed at .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.