Background: Upper limb dystonia is a frequent complication of Wilson's disease (WD). It can lead to poor quality of life and disability. Currently, no effective treatment for it exists. Therefore, we carried out a clinical trial to determine whether high frequency repetitive transcranial magnetic stimulation (rTMS) on the primary motor cortex alleviates upper limb dystonia in WD patients.Methods: This study was a single-center, double-blind, randomized clinical study, included 60 WD patients with upper limb dystonia from a research base of WD in Hefei, China. Participants were randomly divided into a treatment group (TG) and a control group (CG). The TG received rTMS at 10 Hz, while the CG received sham stimulation for 7 consecutive days. Participants were assessed at baseline, after the seventh treatment session, and at 2 and 4 weeks after the seventh treatment session. The primary outcomes included patients' objective muscle tension and stiffness as measured with the MyotonPRO device. The secondary results were scores on clinical scales assessing muscle spasm and motor symptoms, which included the Modified Ashworth Scale (MAS), Unified Wilson's Disease Rating Scale (UWDRS), Burke Fahn Marsden Scale (BFM), and the Activities of Daily Living (ADL) scale.Results: The analysis revealed that after 10 Hz rTMS, muscle tension (P < 0.01) and stiffness (P < 0.01) as measured by the MyotonPRO device decreased significantly in the TG compared to the CG. Moreover, clinically relevant scale scores, including the MAS (P < 0.01), UWDRS (P < 0.01), BFM (P < 0.01), and ADL (P < 0.01) were also significantly reduced.Conclusion: High-frequency rTMS over the primary motor cortex may be an effective complementary and alternative therapy to alleviating upper limb dystonia in WD patients.Clinical Trial Registration:http://www.chictr.org.cn/, identifier: ChiCTR2100046258.
Disposable paper cups are widely used in daily life and most of them are landfilled or incinerated after use, resulting in a serious ecological hazard and significant waste of resources due to the usage of thin polyethylene (PE) as their inner coating. Hence, converting these common solid domestic wastes into high-value added materials is attractive and meaningful. In this study, transparent cellulose-based films were achieved from old bamboo-based disposable paper cups after pretreatment through using the room ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl) as solvent. The cellulose-based film with a dense texture demonstrated a relatively nice mechanical and UV-shielding performances, and its tensile strength was as high as 48 MPa, much higher than that of commercial polyethylene (PE, 12 MPa) film. Thus, the resultant cellulose-based film showed a great potential in the packaging field. Besides, the flexible paper plastic composites (PPC) were also fabricated from the rest thin PE coating with the stuck fibers, and it was found that PPC showed excellent mechanical property and hydrophobicity. Consequently, a feasible and eco-friendly process of recycling and reusing waste disposable paper cups was developed to achieve a complete utilization and valorization of waste disposable paper cups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.