The effects of different substituents, located at the para position of the aromatic ring and at the β-carbon atom of styrenes, on difunctionalizations involving trifluoromethylation and oxime formation are investigated, showing that the difunctionalization reaction has a good adaptability to such reactants containing a range of substituents. This is important in the actual production process. It was found that proton transfer in the final tautomerism step involving transformation of a nitroso intermediate into an oxime is the rate-limiting step. The solvent effect did not influence the rate-limiting step significantly. Compared with direct proton transfer in a vacuum, the energy barrier of the final tautomerism step decreased from 57.80 kcal mol−1 in vacuum to 12.98 kcal mol−1 in water occurring via mediated proton transfer, which declines by 77.5%. When water participates in the rate-limiting steps in organic solvents, the energy barrier also decreases significantly, which indicates that a small amount of water in the organic solvent is conducive to the reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.