The dimensionality dependency of resonance energy transfer is of great interest due to its importance in understanding energy transfer on cell membranes and in low-dimension nanostructures. Light harvesting two-dimensional metal-organic layers (2D-MOLs) and three-dimensional metal-organic frameworks (3D-MOFs) provide comparative models to study such dimensionality dependence with molecular accuracy. Here we report the construction of 2D-MOLs and 3D-MOFs from a donor ligand 4,4',4″-(benzene-1,3,5-triyl-tris(ethyne-2,1-diyl))tribenzoate (BTE) and a doped acceptor ligand 3,3',3″-nitro-4,4',4″-(benzene-1,3,5-triyl-tris(ethyne-2,1-diyl))tribenzoate (BTE-NO). These 2D-MOLs and 3D-MOFs are connected by similar hafnium clusters, with key differences in the topology and dimensionality of the metal-ligand connection. Energy transfer from donors to acceptors through the 2D-MOL or 3D-MOF skeletons is revealed by measuring and modeling the fluorescence quenching of the donors. We found that energy transfer in 3D-MOFs is more efficient than that in 2D-MOLs, but excitons on 2D-MOLs are more accessible to external quenchers as compared with those in 3D-MOFs. These results not only provide support to theoretical analysis of energy transfer in low dimensions, but also present opportunities to use efficient exciton migration in 2D materials for light-harvesting and fluorescence sensing.
Microenvironments in enzymes play crucial roles in controlling the activities and selectivities of reaction centers. Herein we report the tuning of the catalytic microenvironments of metal-organic layers (MOLs), a two-dimensional version of metal-organic frameworks (MOFs) with thickness down to a monolayer, to control product selectivities. By modifying the secondary building units (SBUs) of MOLs with monocarboxylic acids, such as gluconic acid, we changed the hydrophobicity/hydrophilicity around the active sites and fine-tuned the selectivity in photocatalytic oxidation of tetrahydrofuran (THF) to exclusively afford butyrolactone (BTL), likely a result of prolonging the residence time of reaction intermediates in the hydrophilic microenvironment of catalytic centers. Our work highlights new opportunities in using functional MOLs as highly tunable and selective two-dimensional catalytic materials.
Pyridinium has been shown to be a cocatalyst for the electrochemical reduction of CO 2 on metal and semiconductor electrodes, but its exact role has been difficult to elucidate. In this work, we create cooperative cobaltprotoporphyrin (CoPP) and pyridine/pyridinium (py/pyH + ) catalytic sites on metal−organic layers (MOLs) for an electrocatalytic CO 2 reduction reaction (CO 2 RR). Constructed from [Hf 6 (μ 3 -O) 4 (μ 3 -OH) 4 (HCO 2 ) 6 ] secondary building units (SBUs) and terpyridine-based tricarboxylate ligands, the MOL was postsynthetically functionalized with CoPP via carboxylate exchange with formate capping groups. The CoPP group and the pyridinium (pyH + ) moiety on the MOL coactivate CO 2 by forming the [pyH + -− O 2 C-CoPP] adduct, which enhances the CO 2 RR and suppresses hydrogen evolution to afford a high CO/ H 2 selectivity of 11.8. Cooperative stabilization of the [pyH + -− O 2 C-CoPP] intermediate led to a catalytic current density of 1314 mA/mgCo for CO production at −0.86 V RHE , which corresponds to a turnover frequency of 0.4 s −1 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.