Highlights d 8,558 IgG1 + antigen-binding clonotypes were identified by high-throughput scRNA/VDJ-seq d 14 potent SARS-CoV-2 neutralizing antibodies were found from 60 convalescent patients d BD-368-2 showed high therapeutic and prophylactic efficacy in SARS-CoV-2-infected mice d Neutralizing antibodies can be directly selected based on predicted CDR3 H structures
The association of histone modification changes with autism spectrum disorder (ASD) has not been systematically examined. We conducted a histone acetylome-wide association study (HAWAS) by performing H3K27ac chromatin immunoprecipitation sequencing (ChIP-seq) on 257 postmortem samples from ASD and matched control brains. Despite etiological heterogeneity, ≥68% of syndromic and idiopathic ASD cases shared a common acetylome signature at >5,000 cis-regulatory elements in prefrontal and temporal cortex. Similarly, multiple genes associated with rare genetic mutations in ASD showed common "epimutations." Acetylome aberrations in ASD were not attributable to genetic differentiation at cis-SNPs and highlighted genes involved in synaptic transmission, ion transport, epilepsy, behavioral abnormality, chemokinesis, histone deacetylation, and immunity. By correlating histone acetylation with genotype, we discovered >2,000 histone acetylation quantitative trait loci (haQTLs) in human brain regions, including four candidate causal variants for psychiatric diseases. Due to the relative stability of histone modifications postmortem, we anticipate that the HAWAS approach will be applicable to multiple diseases.
Recent research on disparate psychiatric disorders has implicated rare variants in genes involved in global gene regulation and chromatin modification, as well as many common variants located primarily in regulatory regions of the genome. Understanding precisely how these variants contribute to disease will require a deeper appreciation for the mechanisms of gene regulation in the developing and adult human brain. The PsychENCODE project aims to produce a public resource of multidimensional genomic data using tissue- and cell type–specific samples from approximately 1,000 phenotypically well-characterized, high-quality healthy and disease-affected human post-mortem brains, as well as functionally characterize disease-associated regulatory elements and variants in model systems. We are beginning with a focus on autism spectrum disorder, bipolar disorder and schizophrenia, and expect that this knowledge will apply to a wide variety of psychiatric disorders. This paper outlines the motivation and design of PsychENCODE.
BackgroundThe function of a new long non-coding RNA linc00673 remains unclear. While identified as an oncogenic player in non-small cell lung cancer (NSCLC), linc00673 was found to be anti-oncogenic in pancreatic ductal adenocarcinoma (PDAC). However whether linc00673 regulated malignancy and epithelial mesenchymal transition (EMT) has not been characterized.MethodsCell proliferation was assessed using CCK-8 and EdU assays, and cell migration and invasion were assessed using scratch assays and transwell invasion assays. Epithelial mesenchymal transition was examined using western blot, qRT-PCR and immunofluorescence staining. Interaction between miRNA and linc00673 was determined using luciferase reporter assays. In vivo experiments were performed to assess tumor formation. In addition, the expression data of NSCLC specimens of TCGA and patient survival data were utilized to explore the prognostic significance of linc00673.ResultsIn the present study, we found high linc00673 expression was associated with poor prognosis of NSCLC patients. In vitro experiments showed linc00673 knockdown reversed TGF-β induced EMT, and miR-150-5p was predicted to target linc00673 through bioinformatics tools. Overexpression of miR-150-5p suppressed lin00673’s expression while inhibition of miR-150-5p led to significant upregulation of lin00673, suggesting that linc00673 could be negatively regulated by miR-150-5p, which was further confirmed by the inverse correlation between linc00673 and miR-150-5p in NSCLC patients’ specimen. Furthermore, we proved that miR-150-5p could directly target linc00673 through luciferase assay, so linc00673 could sponge miR-150-5p and modulate the expression of a key EMT regulator ZEB1 indirectly. In addition, miR-150-5p inhibition abrogated linc00673 silence mediated proliferation, migration, invasion and EMT suppressing effect. Moreover, the inhibition of linc00673 significantly attenuated the tumorigenesis ability of A549 cells in vivo.ConclusionsWe validated linc00673 as a novel oncogenic lncRNA and demonstrated the molecular mechanism by which it promotes NSCLC, which will advance our understanding of its clinical significance.Electronic supplementary materialThe online version of this article (doi:10.1186/s12943-017-0685-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.