Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it.
Geometric error modeling and its sensitivity analysis are carried out in this paper, which is helpful for precision design of machine tools. Screw theory and rigid body kinematics are used to establish the error model of an RRTTT-type five-axis machine tool, which enables the source errors affecting the compensable and uncompensable pose accuracy of the machine tool to be explicitly separated, thereby providing designers and/or field engineers with an informative guideline for the accuracy improvement by suitable measures, that is, component tolerancing in design, manufacturing, and assembly processes, and error compensation. The sensitivity analysis method is proposed, and the sensitivities of compensable and uncompensable pose accuracies are analyzed. The analysis results will be used for the precision design of the machine tool.
Abstract:This paper presents a simple and effective approach for kinematic calibration of a 3-DOF spindle head developed for high-speed machining. This approach is implemented in three steps, (i) error modelling that allows the geometric errors affecting the compensatable and uncompensatable pose accuracy to be classified; (ii) identification of the geometric errors using a set of distance measurements acquired by a double ball bar (DBB) with a single installation; (iii) design of a linearized error compensator for real-time error implementation. Experimental results on a prototype machine show that the compensatable pose accuracy can significantly be improved by the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.