As a semifermented tea, oolong is exceedingly popular worldwide for its elegant, flowery aroma and mellow, rich taste. However, recent marketing trends for old oolong teas and their chemical quality largely remain unexplored. In this study, we applied widely targeted metabolomics using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) combined with multivariate analysis to investigate the chemical change of oolong teas in the aging process. With the increasing of store time, most nongalloylated catechins; tannins, including TFs and proanthocyanidins; flavonols and glycosylated flavonols; amino acids and their derivatives; nucleotides and their derivatives; and lots of alkaloids and phospholipids declined, while most fatty acids and organic acids increased, and galloylated catechins, GA, and caffeine were almost stable. The result also suggested that approximately seven years (but not an infinite extension) was a special period for oolong tea storage, which brings about excellent taste.
The non-volatile and volatile metabolites in tea confer the taste and odor characteristics of tea fusion, as well as shape the chemical base for tea quality. To date, it remains largely elusive whether there are metabolic crosstalks among non-volatile metabolites and volatile metabolites in the tea tree. Here, we generated an F1 half-sib population by using an albino cultivar of Camellia sinensis cv Baijiguan as the maternal parent, and then we quantified the non-volatile metabolites and volatile metabolites from individual half-sibs. We found that the EGC and EGCG contents of the albino half-sibs were significantly lower than those of the green half-sibs, while no significant differences were observed in total amino acids, caffeine, and other catechin types between these two groups. The phenylpropanoid pathway and the MEP pathway are the dominant routes for volatile synthesis in fresh tea leaves, followed by the MVA pathway and the fatty acid-derivative pathway. The total volatile contents derived from individual pathways showed large variations among half-sibs, there were no significant differences between the albino half-sibs and the green half-sibs. We performed a comprehensive correlation analysis, including correlations among non-volatile metabolites, between volatile synthesis pathways and non-volatile metabolites, and among the volatiles derived from same synthesis pathway, and we identified several significant positive or negative correlations. Our data suggest that the synthesis of non-volatile and volatile metabolites is potentially connected through shared intermediates; feedback inhibition, activation, or competition for common intermediates among branched pathways may co-exist; and cross-pathway activation or inhibition, as well as metabolome channeling, were also implicated. These multiple metabolic regulation modes could provide metabolic plasticity to direct carbon flux and lead to diverse metabolome among Baijiguan half-sibs. This study provides an essential knowledge base for rational tea germplasm improvements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.