Visibility degradation is a pervasive environmental problem in winter in China and its prediction accuracy is therefore important, especially in low visibility conditions. However, current visibility parameterization algorithms tend to overestimate low visibility (<5 km) during haze–fog events. The key point of low visibility calculation and prediction depends on a reasonable understanding of the correlation between visibility, PM2.5 concentration, and relative humidity (RH). Using the observations of PM2.5 concentration and meteorology from December 2016 to February 2017, under different RH levels, the relative contribution differences of PM2.5 concentrations and RH to visibility degradation are investigated in depth. On this basis, new multiple nonlinear regressions for low visibility are developed for eight regions of China. The results show that under relatively low RH conditions (<80% or 85%), PM2.5 concentration plays a leading role in visibility changes in China. With the increase in RH (80–90% or 85–95%), the PM2.5 concentration corresponding to the visibility of 10 and 5 km decreases and the contribution of RH becomes increasingly important. When the RH grows to >95%, a relatively low PM2.5 concentration could also lead to visibility decreasing to <5 km. Within this range, the PM2.5 concentration corresponding to the visibility of 5 km in Central China (CC), Sichuan Basin (SCB), and Yangtze River Delta (YRD) is approximately 50, 50, and 30 μg m−3, and that in Beijing-Tianjin-Hebei (BTH) and Guanzhong Plain (GZP) is approximately 125 μg m−3, respectively. Specifically, based on these contribution differences, new multiple nonlinear regression equations of visibility, PM2.5 concentration, temperature, and dew point temperature of the eight regions (Scheme A) are established respectively after grouping the datasets by setting different RH levels (BTH, GZP, and North Eastern China (NEC): RH < 80%, 80 ≤ RH < 90% and RH ≥ 90%; CC, SCB, YRD, and South China Coastal (SCC): RH < 85%, 85 ≤ RH < 95% and RH ≥ 95%; Xinjiang (XJ): RH < 90% and RH ≥ 90%). According to the previous regression methods, we directly established the multiple regression models between visibility and the same factors as a comparison (Scheme B). Statistical results show that the advantage of Scheme A for 5 and 3 km evaluation is more significant compared with Scheme B. For the five low visibility regions (BTH, GZP, CC, SCB, and YRD), RMSEs of Scheme A under visibility <5 and 3 km are 0.77–1.01 and 0.48–0.95 km, 16–43 and 24–57% lower than those of Scheme B, respectively. Moreover, Scheme A reproduced the winter visibility in BTH, GZP, CC, SCB, YRD, and SCC from 2016 to 2020 well. The MAEs, MBs, and RMSEs under visibility < 5 km are 0.44–1.41, −1.33–1.24, and 0.58–2.36 km, respectively. Overall, Scheme A is confirmed to be reliable and applicable for low visibility prediction in many regions of China. This study provides a new visibility parameterization algorithm for the haze–fog numerical prediction system.
Aerosol plays a crucial role in regional and global climate by absorbing and scatting solar radiation to affect the radiation balance (Z.
Abstract. The representation of aerosol–cloud interaction (ACI) and its impacts in the current climate or weather model remains a challenge, especially for severely polluted regions with high aerosol concentration, which is even more important and worthy of study. Here, ACI is first implemented in the atmospheric chemistry model GRAPES_Meso5.1/CUACE by allowing for real-time aerosol activation in the Thompson cloud microphysics scheme. Two experiments are conducted focusing on a haze pollution case with coexisting high aerosol and stratus cloud over the Jing–Jin–Ji region in China to investigate the impact of ACI on the mesoscale numerical weather prediction (NWP). Study results show that ACI increases cloud droplet number concentration, water mixing ratio, liquid water path (CLWP), and optical thickness (COT), as a result improving the underestimated CLWP and COT (reducing the mean bias by 21 % and 37 %, respectively) over a certain subarea by the model without ACI. A cooling in temperature in the daytime below 950 hPa occurs due to ACI, which can reduce the mean bias of 2 m temperature in the daytime by up to 14 % (∼ 0.6 ∘C) in the subarea with the greatest change in CLWP and COT. The 24 h cumulative precipitation in this subarea corresponding to moderate-rainfall events increases, which can reduce the mean bias by 18 %, depending on the enhanced melting of the snow by more cloud droplets. In other areas or periods with a slight change in CLWP and COT, the impact of ACI on NWP is not significant, suggesting the inhomogeneity of ACI. This study demonstrates the critical role of ACI in the current NWP model over the severely polluted region and the complexity of the ACI effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.