Sufu is a form of food derived from traditional Chinese fermented soybean. It has a unique flavor and contains abundant nutrients. With demands for healthy food on the rise, a higher level of sufu functionality is required. In fermentation of soybean‐derived products, lactic acid bacteria (LAB) are widely used as an adjunct culture, which provides health benefits and enhances flavor of food. Among LAB, Lactobacillus brevis has the potential to generate γ‐aminobutyric acid (GABA), which is well‐known for its physiological functions. In this study, L. brevis was added to bacteria‐fermented sufu to evaluate its impacts on sufu quality. Sufu was produced via co‐inoculation with Bacillus subtilis and L. brevis (group A sufu) or a single inoculation with B. subtilis (group B sufu). Metabolite changes in the two groups during fermentation were investigated and physicochemical changes were observed. The results indicated that the addition of L. brevis increased the concentration of GABA and decreased the concentrations of histamine and serotonin. The concentrations of volatile compounds, such as esters and acids, especially 2‐methyl‐butanoic acid ethyl ester, as well as the concentrations of phenylethyl alcohol and 3‐methyl‐butanol were significantly higher in group A. Inoculation of L. brevis changed the metabolite profile of sufu and improved its functionality and safety of edibility. The current study explored the potential of applying L. brevis to the manufacture of bacteria‐fermented sufu.
NADH:quinone oxidoreductases (NQOs) act as the electron entry sites in bacterial respiration and oxidize intracellular NADH that is essential for the synthesis of numerous molecules. Klebsiella pneumoniae contains three NQOs (NDH-1, NDH-2, and NQR). The effects of inactivating these NQOs, separately and together, on cell metabolism were investigated under different culture conditions. Defective growth was evident in NDH-1-NDH-2 double and NDH-1-NDH-2-NQR triple deficient mutants, which was probably due to damage to the respiratory chain. The results also showed that K. pneumoniae can flexibly use NQOs to maintain normal growth in single NQO-deficient mutants. And more interestingly, under aerobic conditions, inactivating NDH-1 resulted in a high intracellular NADH:NAD ratio, which was proven to be beneficial for 2,3-butanediol production. Compared with the parent strain, 2,3-butanediol production by the NDH-1-deficient mutant was increased by 46% and 62% in glycerol- and glucose-based media, respectively. Thus, our findings provide a practical strategy for metabolic engineering of respiratory chains to promote the biosynthesis of 2,3-butanediol in K. pneumoniae.
The occurrence of disinfectant-resistant bacteria in a fresh-cut vegetables processing facility was observed, and Bacillus paramycoides B5 enhanced S. enteritidis survival under NaClO treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.