Polyetheretherketone (PEEK)/β‐tricalcium phosphate (β‐TCP) scaffolds are expected to be able to combine the excellent mechanical strength of PEEK and the good bioactivity and biodegradability of β‐TCP. While PEEK acts as a closed membrane in which β‐TCP is completely wrapped after the melting/solidifying processing, the PEEK membrane degrades very little, hence the scaffolds cannot display bioactivity and biodegradability. The strategy reported here is to blend a biodegradable polymer with PEEK and β‐TCP to fabricate multi‐material scaffolds via selective laser sintering (SLS). The biodegradable polymer first degrades and leaves caverns on the closed membrane, and then the wrapped β‐TCP is exposed to body fluid. In this study, poly(l‐lactide) (PLLA) is adopted as the biodegradable polymer. The results show that large numbers of caverns form on the membrane with the degradation of PLLA, enabling direct contact between β‐TCP and body fluid, and allowing for their ion‐exchange. As a consequence, the scaffolds display the bioactivity, biodegradability and cytocompatibility. Moreover, bone defect repair studies reveal that new bone tissues grow from the margin towards the center of the scaffolds from the histological analysis. The bone defect region is completely connected to the host bone end after 8 weeks of implantation.
The incorporation of hydroxyapatite (HAP) into poly-
l
-lactic acid (PLLA) matrix serving as bone scaffold is expected to exhibit bioactivity and osteoconductivity to those of the living bone. While too low degradation rate of HAP/PLLA scaffold hinders the activity because the embedded HAP in the PLLA matrix is difficult to contact and exchange ions with body fluid. In this study, biodegradable polymer poly (glycolic acid) (PGA) was blended into the HAP/PLLA scaffold fabricated by laser 3D printing to accelerate the degradation. The results indicated that the incorporation of PGA enhanced the degradation rate of scaffold as indicated by the weight loss increasing from 3.3% to 25.0% after immersion for 28 days, owing to the degradation of high hydrophilic PGA and the subsequent accelerated hydrolysis of PLLA chains. Moreover, a lot of pores produced by the degradation of the scaffold promoted the exposure of HAP from the matrix, which not only activated the deposition of bone like apatite on scaffold but also accelerated apatite growth. Cytocompatibility tests exhibited a good osteoblast adhesion, spreading and proliferation, suggesting the scaffold provided a suitable environment for cell cultivation. Furthermore, the scaffold displayed excellent bone defect repair capacity with the formation of abundant new bone tissue and blood vessel tissue, and both ends of defect region were bridged after 8 weeks of implantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.