Regulation of cell cycle progression is fundamental to cell health and reproduction, and failures in this process are associated with many human diseases. Much of our knowledge of cell cycle regulators derives from loss-of-function studies. To reveal new cell cycle regulatory genes that are difficult to identify in loss-of-function studies, we performed a near-genome-wide flow cytometry assay of yeast gene overexpression-induced cell cycle delay phenotypes. We identified 108 genes whose overexpression significantly delayed the progression of the yeast cell cycle at a specific stage. Many of the genes are newly implicated in cell cycle progression, for example SKO1, RFA1, and YPR015C. The overexpression of RFA1 or YPR015C delayed the cell cycle at G2/M phases by disrupting spindle attachment to chromosomes and activating the DNA damage checkpoint, respectively. In contrast, overexpression of the transcription factor SKO1 arrests cells at G1 phase by activating the pheromone response pathway, revealing new cross-talk between osmotic sensing and mating. More generally, 92%–94% of the genes exhibit distinct phenotypes when overexpressed as compared to their corresponding deletion mutants, supporting the notion that many genes may gain functions upon overexpression. This work thus implicates new genes in cell cycle progression, complements previous screens, and lays the foundation for future experiments to define more precisely roles for these genes in cell cycle progression.
BackgroundWe confirmed that the filaggrin gene mutation c.3321delA is associated with atopic dermatitis in our previous genome wide association study of the Chinese Han population. c.3321delA is the most common filaggrin gene mutation in Chinese atopic dermatitis patients but is not present in European populations.ObjectiveTo investigate the genetic model for the c.3321delA mutation and to determine the correlation between c.3321delA and atopic dermatitis clinical phenotypes in the Chinese Han population.MethodThe filaggrin gene mutation c.3321delA was sequenced in 1,080 atopic dermatitis patients and 908 controls from the Chinese population. The χ2 test, ANOVA,nonparametric tests and logistic regression were used to investigate the relationship between the c.3321delA genotype and atopic dermatitis clinical phenotypes in the Chinese Han population.ResultsAnalyses of the genetic model revealed that the additive model best described the c.3321delA mutation (P = 3.09E-11, OR = 3.43, 95%CI = 2.38–4.96). Stratified analyses showed that the c.3321delA allele frequency distribution is significantly associated with concomitant skin xerosis (P = 1.68E-03, OR = 2.13,95%CI = 1.32–3.46), palmar hyperlinearity (P = 3.64E-17, OR = 4.0,95%CI = 2.86–5.70), white dermatographism (P = 4.25E-03, OR = 1.82,95%CI = 1.22–2.71), food intolerance (P = 1.51E-03, OR = 1.76,95%CI = 1.23–2.50) and disease severity ( P = 9.67E-05).ConclusionOur study indicates that the filaggrin gene mutation c.3321delA is associated with clinical phenotypes of atopic dermatitis in the Chinese Han population, which might help us gain a better understanding on the pathogenesis of atopic dermatitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.