Arable land ecosystems are among the most important terrestrial systems. The issues of carbon sequestration and emission reductions in arable land ecosystems have received extensive attention. Countries around the world have actively issued policies to manage arable land ecosystems. At present, more than 100 countries have made carbon neutralization target commitments. Various arable land management measures and arable land planting strategies have important impacts on the carbon storage of arable land ecosystems. Research on arable land carbon is of great significance to global climate change. This study attempts to investigate the problems and deficiencies in the current research by summarizing a number of studies, including the main methods for the quantitative research of carbon sources and sinks as well as the influencing factors in these ecosystems. In this study, it is found that due to the differences of climate patterns, soil properties and management practices in arable land ecosystems, the factors affecting carbon sources and sinks are of great heterogeneity and complexity. Generally, variations in natural factors affect the carbon balance in different regions, while human management measures, such as irrigation, fertilization and the degree of agricultural mechanization, are the leading factors causing changes to carbon sources and sinks in these ecosystems. In addition, there are still great uncertainties in the evaluation of carbon sources and sinks in these ecosystems caused by different estimation models and methods. Therefore, emphasis should be placed on model parameter acquisition and method optimization in the future. This review provides a scientific basis for understanding carbon sources and sinks in arable land ecosystems, enhancing their carbon sink capacity and guiding low-carbon agriculture on arable land.
With continuous population growth and farmland decrease, the food security is seriously threatened. Farmland reclamation has been used as a means of raising the agricultural productivity and improving the ecological environment. However, the lack of reclaimed soil represents a serious problem. To verify the feasibility and effect of using large amounts of iron tailings to construct farmland, ten treatments (T1–T10) were designed to represent different soil profiles of regional normal farmland and constructed profiles using iron tailings. All treatments involving an iron tailings layer below topsoil exhibited higher soil water contents. The field capacity under T3 (20-cm iron tailings layer below cinnamon soil (b)) was 19.20% higher than that under T7 (20-cm red clay layer below cinnamon soil (b)), and the field capacity under T5 (20-cm iron tailings layer below cinnamon soil (a)) was 2.26% higher than that under T9 (20-cm red clay layer below cinnamon soil (a)). The soil water contents under T3 and T5 were almost the same as those under T7 and T9, respectively. The water-holding capacity of the 30-cm iron tailings layer (T6) was better than that of the 20-cm iron tailings layer (T2). Additionally, none of the treatments caused salt injury to maize. The maize height and stem thickness under the treatments employing iron tailings layers below topsoil were significantly greater than those in normal farmland; the maize height and stem thickness under T3 were 136.82% and 32.02% greater, respectively, than those under T7, and the values under T5 were 9.13% and 9.56% greater, respectively, than those under T9. The maize yields matched or even surpassed those in normal farmland, namely, the maize yield under T5 was equal to that under T9, and the maize yield under T3 was 12.69% higher than that under T7. In general, the application of an iron tailings layer below topsoil to construct farmland is a feasible and environmentally friendly way to realize sustainable farmland utilization and is beneficial to soil quality and crop yield improvement. Collectively, these results provide insight into the efficient utilization of iron tailings and environmental protection.
Iron tailings used as soil substitute materials to construct reclaimed farmland soil can effectively realize the large-scale resource utilization of iron tailings and reduce environmental risks. It is vital to understand the mechanisms affecting reclaimed soil quality and determine the appropriate pattern for reclamation with iron tailings. Thus, a soil quality index (SQI) was developed to evaluate the soil quality of reclaimed farmland with iron tailings in a semi-arid region. Soil samples were collected from two reclamation measures (20 cm subsoil + 20 cm iron tailings + 30 cm topsoil and 20 cm subsoil + 20 cm iron tailings + 50 cm topsoil) with reclamation years of 3 (R3), 5 (R5), and 10 (R10) at three soil depths (0–10, 10–20, and 20–30 cm) to measure 13 soil physicochemical properties in western Liaoning, China. Adjacent normal farmland (NF) acted as a reference. Results indicated that iron tailings were suitable for constructing the soil profile configuration of reclaimed farmland. SQI of reclaimed soil increased with the reclamation year, but it has not reached the NF level after 3 years, while it was better than NF after 5 years. The nutrient content of reclaimed soil increased with the reclamation year, but it still did not reach the NF level after 10 years. SQI of R10 (with 50 cm topsoil) was also better than NF but slightly lower than R5 (with 30 cm topsoil). For the semi-arid region with sticky soil texture, the topsoil thickness of reclamation was not the thicker the better, and 30 cm topsoil covered on iron tailings in western Liaoning could achieve a better reclamation effect than 50 cm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.