This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
With the rapid development of the Internet, various forms of network attack have emerged, so how to detect abnormal behavior effectively and to recognize their attack categories accurately have become an important research subject in the field of cyberspace security. Recently, many hot machine learning-based approaches are applied in the Intrusion Detection System (IDS) to construct a data-driven model. The methods are beneficial to reduce the time and cost of manual detection. However, the real-time network data contain an ocean of redundant terms and noises, and some existing intrusion detection technologies have lower accuracy and inadequate ability of feature extraction. In order to solve the above problems, this paper proposes an intrusion detection method based on the Decision Tree-Recursive Feature Elimination (DT-RFE) feature in ensemble learning. We firstly propose a data processing method by the Decision Tree-Based Recursive Elimination Algorithm to select features and to reduce the feature dimension. This method eliminates the redundant and uncorrelated data from the dataset to achieve better resource utilization and to reduce time complexity. In this paper, we use the Stacking ensemble learning algorithm by combining Decision Tree (DT) with Recursive Feature Elimination (RFE) methods. Finally, a series of comparison experiments by cross-validation on the KDD CUP 99 and NSL-KDD datasets indicate that the DT-RFE and Stacking-based approach can better improve the performance of the IDS, and the accuracy for all kinds of features is higher than 99%, except in the case of U2R accuracy, which is 98%.
With the wide deployment of wireless sensor networks in smart industrial systems, lots of unauthorized attacking from the adversary are greatly threatening the security and privacy of the entire industrial systems, of which node replication attacks can hardly be defended since it is conducted in the physical layer. To solve this problem, we propose a secure random key distribution scheme, called SRKD, which provides a new method for the defense against the attack. Specifically, we combine a localized algorithm with a voting mechanism to support the detection and revocation of malicious nodes. We further change the meaning of the parameter s to help prevent the replication attack. Furthermore, the experimental results show that the detection ratio of replicate nodes exceeds 90% when the number of network nodes reaches 200, which demonstrates the security and effectiveness of our scheme. Compared with existing state-of-the-art schemes, SRKD also has good storage and communication efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.