BackgroundHypoxia-induced renal tubular cell epithelial–mesenchymal transition (EMT) is an important event leading to renal fibrosis. MicroRNAs (miRNAs) are small non-coding RNA molecules that bind to their mRNA targets, thereby leading to translational repression. The role of miRNA in hypoxia-induced EMT is largely unknown.Methodology/Principal FindingsmiRNA profiling was performed for the identification of differentially expressed miRNAs in HK-2 cells under normal and low oxygen, and the results were then verified by quantitative real time RT-PCR (qRT-PCR). The function of miRNAs in hypoxia-induced renal tubular cell EMT was assessed by the transfection of specific miRNA inhibitors and mimics. Luciferase reporter gene assays and western blot analysis were performed to validate the target genes of miR-34a. siRNA against Jagged1 was designed to investigate the role of the miR-34a-Notch pathway in hypoxia induced renal tubular cell EMT. miRNA-34a was identified as being downregulated in hypoxic renal tubular epithelial cells. Inhibition of miR-34a expression in HK-2 cells, which highly express endogenous miR-34a, promoted a mesenchymal phenotype accompanied by reduced expression of the epithelial marker Z0-1, E-cadherin and increased expression of the mesenchymal markers α-SMA and vimentin. Conversely, miR-34a mimics effectively prevented hypoxia-induced EMT. Transfection of miRNA-34a in HK-2 cells under hypoxia abolished hypoxia-induced expression of Notch1 and Jagged1 as well as Notch downstream signals, such as snail. Western blot analysis and luciferase reporter gene assays showed direct evidence for miR-34a targeting Notch1 and Jagged1. siRNAs against Jagged1 or Notch1 effectively prevented miR-34a inhibitor-induced tubular epithelial cell EMT.Conclusions/SignificanceOur study provides evidence that the hypoxia-induced decrease of miR-34a expression could promote EMT in renal tubular epithelial cells by directly targeting Notch1 and Jagged1, and subsequently, Notch downstream signaling.
In vitro and in vivo evidence shows that activation of HIF-1a/Twist-Bmi1 signaling in renal epithelial cells is associated with the development of chronic renal disease and may promote fibrogenesis via modulation of PI3K/Akt/Snail signaling by facilitating EMT.
Background: Chronic hypoxia-induced epithelial-to-mesenchymal transition (EMT) is a crucial process in renal fibrogenesis. Egr-1, as a transcription factor, has been proven to be important in promoting EMT. However, whether it functions in hypoxia-induced renal tubular EMT has not been fully elucidated. Methods: Egr-1 were detected at mRNA and protein levels by qPCR and Western blot analysis respectively after renal epithelial cells were subjected to hypoxia treatment. Meanwhile, EMT phenotype was also observed through identification of relevant EMT-specific markers. siRNA was used to knock down Egr-1 expression and subsequent changes were observed. Specific PKC and MAPK/ERK inhibitors were employed to determine the molecular signaling pathway involved in Egr-1-mediated EMT phenotype. In vivo assays using rat remnant kidney model were used to validate the in vitro results. Furthermore, Egr-1 expression was examined in the samples of CKD patients with the clinical relevance revealed. Results: Hypoxia treatment enhanced the mRNA and protein levels of Egr-1 in HK-2 cells, which was accompanied by a reduced expression of the epithelial marker E-cadherin and an enhanced expression of the mesenchymal marker Fsp-1. Downregulation of Egr-1 with siRNA reversed hypoxia-induced EMT. Using the specific inhibitors to protein kinase C (calphostin C) or MAPK/ERK (PD98059), we identified that hypoxia induced Egr-1 expression through the PKC/ERK pathway. In addition, the upregulation of Egr-1 raised endogenous Snail levels, and the downregulation of Snail inhibited Egr-1-mediated EMT in HK-2 cells. Through in vivo assays using rat remnant kidney and CKD patients' kidney tissues, we found that Egr-1 and Snail were overexpressed in tubular epithelial cells with EMT. Conclusion: Egr-1 may be an important regulator of the development of renal tubular EMT induced by hypoxia through the PKC/ERK pathway and the activation of Snail. Targeting Egr-1 expression or activity might be a novel therapeutic strategy to control renal fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.