Current extraction methods often extract DNA and RNA separately, and few methods are capable of co-extracting DNA and RNA from sputum. We established a nucleic acid co-extraction method from sputum based on magnetic beads and optimized the method by evaluating influencing factors, such as the guanidinium thiocyanate (GTC) and dithiothreitol (DTT) concentrations, magnetic bead amount, incubation temperature, lysis buffer pH and RNA carrier type. The feasibility of the simultaneous nucleic acid co-extraction method was evaluated by amplifying DNA and RNA viruses from a single clinical specimen with a multiplex RT-qPCR method. Both DNA and RNA were most efficiently extracted when the GTC and DTT concentrations were 2.0 M and 80 mM, respectively, 20 μl magnetic beads were added, the incubation temperature was 80 °C, the pH was 8 or 9, and RNA carrier A was used. Therefore, we established a simple method to extract nucleic acids from two important respiratory viruses compared with other commercial kits. This magnetic beads-based co-extraction method for sputum followed by a multiplex RT-qPCR can rapidly and precisely detect DNA and RNA viruses from a single clinical specimen and has many advantages, such as decreased time, low cost, and a lack of harmful chemicals.
MicroRNAs (miRNAs) have recently been shown to down-regulate gene expression by targeting mRNA translation and to play a critical role in tumorigenesis; how they regulate bladder tumor development, particularly in patients, is, however, poorly understood. The difference in miRNA expression in a bladder tumor compared with healthy tissue from the same patients was examined using microRNA arrays in seven patients. Here, we showed that up-regulation of miRNA was not commonly found in this limited number of patients, and four miRNAs (miR-26a, miR-29c, miR-30c, miR-30e-5p) were down-regulated as a common marker in patients with a 1-3 grade of disease. Our data suggest that instead of up-regulation of carcinogenic miRNAs, loss of regulation of these miRNA may be critical for bladder tumor development in patients.
Cervical cancer is the fourth most common cancer in women globally. Lack of effective pharmacotherapies for cervical cancer mainly attributed to an elusive understanding of the mechanism underlying its pathogenesis. Pyroptosis plays a key role in inflammation and cancer. Our study identified microRNA (miR) 145 (miR-145)/gasdermin D (GSDMD) signaling pathway as critical mediators in the effect of tanshinone II A on HeLa cells. In the present study, we found that treatment of tanshinone II A led to an obvious repression of cell proliferation and an increase in apoptosis on HeLa cells, especially in high concentration. Compared with the controlled group, tanshinone II A enhanced the activity of caspase3 and caspase9. Notably, the results demonstrated that tanshinone II A regulated cell proliferation of HeLa cells by regulating miR-145/GSDMD signaling pathway. Treatment of tanshinone II A significantly up-regulated the expression of GSDMD and miR-145. After transfection of si-miR-145 plasmids, the effects of tanshinone II A on HeLa cells were converted, including cell proliferation, apoptosis and pyroptosis. In addition, the results showed that tanshinone II A treatment altered the expression level of PI3K, p-Akt, NF-kB p65 and Lc3-I. Collectively, our findings demonstrate that tanshinone II A exerts anticancer activity on HeLa cells by regulating miR-145/GSDMD signaling. The present study is the first time to identify miR-145 as a candidate target in cervical cancer and show an association between miR-145 and pyroptosis, which provides a novel therapy for the treatment of cervical cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.