Tracking living cells in video sequence is difficult, because of cell morphology and high similarities between cells. Tracking-by-detection methods are widely used in multi-cell tracking. We perform multi-cell tracking based on the cell centroid detection, and the performance of the detector has high impact on tracking performance. In this paper, UNet is utilized to extract inter-frame and intra-frame spatio-temporal information of cells. Detection performance of cells in mitotic phase is improved by multi-frame input. Good detection results facilitate multi-cell tracking. A mitosis detection algorithm is proposed to detect cell mitosis and the cell lineage is built up. Another UNet is utilized to acquire primary segmentation. Jointly using detection and primary segmentation, cells can be fine segmented in highly dense cell population. Experiments are conducted to evaluate the effectiveness of our method, and results show its state-of-the-art performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.