Cancers with dysfunctional mutations in BRCA1 or BRCA2, most commonly associated with some breast cancers, are deficient in the DNA damage repair pathway called homologous recombination (HR), which makes them exquisitely vulnerable to poly(ADP-ribose) polymerase (PARP) inhibitors, such as olaparib. This functional state and therapeutic sensitivity is referred to as “BRCAness”. Pharmaceutical induction of BRCAness could expand the use of PARP inhibitors to other tumor types. For example, BRCA mutations are present in only a small proportion of prostate cancer (PCa) patients. We found that castration-resistant PCa (CRPC) cells increased expression of a set of HR-associated genes, including BRCA1, RAD54L and RMI2. Androgen-targeted therapy is typically not effective in CRPC patients. However, the androgen receptor (AR) inhibitor enzalutamide suppressed the expression of those HR genes, thus creating HR deficiency and BRCAness in CRPC cells. In a manner dependent on these gene expression effects, a “lead-in” treatment strategy, in which enzalutamide was followed by the combination of enzalutamide and olaparib, promoted DNA damage-induced cell death and inhibited clonal proliferation of PCa cells in culture and suppressed the growth of PCa xenografts in mice. Thus, our study suggests that anti-androgen and PARP inhibitor combination therapy may be effective for patients with CRPC, and that pharmaceutically-induced BRCAness may expand the clinical use of PARP inhibitors.
Tumor-infiltrating immune cells (TIICs) play essential roles in cancer development and progression. However, the association of TIICs with prognosis in colorectal cancer (CRC) patients remains elusive. Infiltration of TIICs was assessed using ssGSEA and CIBERSORT tools. The association of TIICs with prognosis was analyzed in 1,802 CRC data downloaded from the GEO (https://www.ncbi.nlm.nih.gov/geo/) and TCGA (https://portal.gdc.cancer.gov/) databases. Three populations of TIICs, including CD66b+ tumor-associated neutrophils (TANs), FoxP3+ Tregs, and CD163+ tumor-associated macrophages (TAMs) were selected for immunohistochemistry (IHC) validation analysis in 1,008 CRC biopsies, and their influence on clinical features and prognosis of CRC patients was analyzed. Prognostic models were constructed based on the training cohort (359 patients). The models were further tested and verified in testing (249 patients) and validation cohorts (400 patients). Based on ssGSEA and CIBERSORT analysis, the correlation between TIICs and CRC prognosis was inconsistent in different datasets. Moreover, the results with disease-free survival (DFS) and overall survival (OS) data in the same dataset also differed. The high abundance of TIICs found by ssGSEA or CIBERSORT tools can be used for prognostic evaluation effectively. IHC results showed that TANs, Tregs, TAMs were significantly correlated with prognosis in CRC patients and were independent prognostic factors (PDFS ≤ 0.001; POS ≤ 0.023). The prognostic predictive models were constructed based on the numbers of TANs, Tregs, TAMs (C-indexDFS&OS = 0.86; AICDFS = 448.43; AICOS = 184.30) and they were more reliable than traditional indicators for evaluating prognosis in CRC patients. Besides, TIICs may affect the response to chemotherapy. In conclusion, TIICs were correlated with clinical features and prognosis in patients with CRC and thus can be used as markers.
Gastric cancer (GC), which is mainly induced by Helicobacter pylori (H. pylori) infection, is one of the leading causes of cancer-related death in the developing world. Active inflammation initiated by H. pylori infection and maintained by inherent immune disorders promotes carcinogenesis and postoperative recurrence. However, the presence with H. pylori in tumors has been linked to a better prognosis, possibly due to the induction of antitumor immunity. Tumor infiltrations of tumor-associated macrophages, myeloid-derived suppressor cells, neutrophils, Foxp3(+) regulatory T cells are correlated with poor prognosis. Tumor infiltrating CD8(+) cytotoxic T lymphocytes, dendritic cells, and CD45RO T cells are generally associated with good prognosis of GC, although some subsets of these immune cells have inverse prognosis prediction values. High ratios of Foxp3(+)/CD4(+) and Foxp3(+)/CD8(+) in tumors are associated with a poor prognosis; whereas high Th1/Th2 ratio in tumors predicts a good prognosis. High levels of interleukin (IL)-6, IL-10, IL-32, and chemokine C-C motif ligands (CCL)7 and CCL21 in circulation, high expression of CXC chemokine receptor 4, chemokine C-C motif receptor (CCR)3, CCR4, CCR5, CCR7, hypoxia-inducible factor-1α, signal transducer activator of transcription-3, cyclooxygenase-2, and orphan nuclear receptor 4A2 in tumors are associated with an unfavorable prognosis. Increased serum levels of matrix metalloproteinases (MMP)-3, MMP-7, and MMP-11 and increased levels of MMP-9, MMP-12, and MMP-21 in tumors are consistently associated with poor survival of GC. Further emphasis should be put on the integration of these biomarkers and validation in large cohorts for personalized prediction of GC postoperative prognosis.
Introduction: Hepatitis B virus (HBV) genotypes, replication status, and mutations have been associated with the risk of hepatocellular carcinoma (HCC). Our aim was to study the distribution and HCC-related viral properties of HBV genotypes/subgenotypes in Mainland China.Methods: A multistage cluster probability sampling method was applied to select 81,775 participants between 1 and 59 years at 160 national disease surveillance points. We examined hepatitis B surface antigen, HBV genotypes and subgenotypes, hepatitis B e antigen, viral load, and mutations in the PreS and core promoter regions of HBV genome.Results: HBV subgenotypes B2 (27.3%), C1 (10.7%), and C2 (58.0%) were predominant. Genotype D (D1, 80.8%) was frequent in the Uygur. We identified a new subgenotype, C9, mainly in Tibetans. Compositions of subgenotypes B2 and C1 and genotype mixture increased from the North to Central South, which was consistently associated with the increasing prevalence of hepatitis B surface antigen. Hepatitis B e antigen positivity and viral loads were higher in the young with genotype B and declined more rapidly with increasing age than those with genotype C. In contrast to G1896A, PreS deletion, T31C, T1753V, and A1762T/ G1764A were more frequent in subgenotype C2 than in subgenotype B2. A1762T/G1764A, T1753V, C1653T, and G1896A, except PreS deletion, consecutively increased with increasing age.Conclusion: HBV subgenotypes B2, C1, and C2 are endemic in Mainland China. HBV genotype C exhibits less replication activity in the young and harbors higher frequencies of the HCC-associated mutations than genotype B.Impact: These basic data could help evaluate the association of HBV variations with HCC. Cancer Epidemiol
Androgen deprivation is the standard systemic treatment for advanced prostate cancer (PCa), but most patients ultimately develop castration-resistance. We show here that MYB is transcriptionally activated by androgen deprivation or impairment of androgen receptor (AR) signaling. MYB gene silencing significantly inhibited PCa growth in vitro and in vivo. Microarray data revealed that c-Myb shares a substantial subset of DNA damage response (DDR) target genes with AR, suggesting that c-Myb may replace AR for the dominant role in the regulation of their common DDR target genes in AR inhibition-resistant or AR-negative PCa. Gene signatures comprising AR, MYB, and their common DDR target genes are significantly correlated with metastasis, castration-resistance, recurrence, and shorter overall survival in PCa patients. We demonstrated in vitro that silencing of MYB, BRCA1 or TOPBP1 synergized with poly (ADP-ribose) polymerase (PARP) inhibitor olaparib (OLA) to increase cytotoxicity to PCa cells. We further demonstrated that targeting the c-Myb-TopBP1-ATR-Chk1 pathway by using the Chk1 inhibitor AZD7762 synergizes with OLA to increase PCa cytotoxicity. Our results reveal new mechanism-based therapeutic approaches for PCa by targeting PARP and the c-Myb-TopBP1-ATR-Chk1 pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.